Logo Header
  1. Môn Toán
  2. Giải bài 7.25 trang 56 SGK Toán 10 – Kết nối tri thức

Giải bài 7.25 trang 56 SGK Toán 10 – Kết nối tri thức

Giải bài 7.25 trang 56 SGK Toán 10 – Kết nối tri thức

Bài 7.25 trang 56 SGK Toán 10 – Kết nối tri thức là một bài tập quan trọng trong chương trình học Toán 10. Bài tập này yêu cầu học sinh vận dụng kiến thức về vectơ, các phép toán vectơ và ứng dụng của vectơ trong hình học để giải quyết.

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 7.25 trang 56 SGK Toán 10 – Kết nối tri thức, giúp các em học sinh nắm vững kiến thức và rèn luyện kỹ năng giải bài tập.

Khúc của của một con đường có dạng hình parabol, điềm đầu vào khúc cua là A, điểm cuối là B, khoảng cách AB = 400 m. Đỉnh parabol (P) của khúc của cách đường thẳng ABmột khoảng 20 m và cách đều A, B (H.7.34).

Đề bài

Khúc của của một con đường có dạng hình parabol, điềm đầu vào khúccua là A, điểm cuối là B, khoảng cách AB = 400 m. Đỉnh parabol (P) của khúc của cách đường thẳng ABmột khoảng 20 m và cách đều A, B (H.7.34).

a) Lập phương trình chính tắc của (P), với 1 đơn vị đo trong mặt phẳng toạ độ tương ứng 1 m trên thực tế.

b) Lập phương trình chính tắc của (P), với 1 đơn vị đo trong mặt phẳng toạ độ tương ứng 1 km trên thực tế.

Phương pháp giải - Xem chi tiếtGiải bài 7.25 trang 56 SGK Toán 10 – Kết nối tri thức 1

Gọi phương trình chính tắc của (P) và sử dụng điều kiện (P) đi qua điểm thỏa mãn để tìm phương trình (P).

Lời giải chi tiết

Phương trình chính tắc của parabol (P) có dạng \({y^2} = 2px\left( {p > 0} \right)\).

a) Khi 1 đơn vị đo trong mặt phẳng tọa độ ứng với 1m trên thực tế, ta có \(B\left( {20;200} \right)\).

Thay tọa độ điểm B vào phương trình của (P) ta được \({200^2} = 2p.20 \Leftrightarrow p = 1000\).

Vậy phương trình chính tắc của (P) là: \({y^2} = 2000x\).

b) Khi 1 đơn vị đo trong mặt phẳng tọa độ ứng với 1km trên thực tế, ta có \(B\left( {0,02;0,2} \right)\).

Tương tự, ta có phương trình chính tắc của (P) là \({y^2} = 2x\).

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 7.25 trang 56 SGK Toán 10 – Kết nối tri thức đặc sắc thuộc chuyên mục bài tập toán 10 trên nền tảng tài liệu toán. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải bài 7.25 trang 56 SGK Toán 10 – Kết nối tri thức: Hướng dẫn chi tiết và dễ hiểu

Bài 7.25 trang 56 SGK Toán 10 – Kết nối tri thức thuộc chương trình học Toán 10, tập trung vào việc vận dụng kiến thức về vectơ để giải quyết các bài toán hình học. Để giải bài tập này một cách hiệu quả, học sinh cần nắm vững các khái niệm cơ bản về vectơ, bao gồm:

  • Vectơ: Định nghĩa, các yếu tố của vectơ, sự bằng nhau của hai vectơ.
  • Các phép toán vectơ: Phép cộng, phép trừ, phép nhân với một số thực.
  • Ứng dụng của vectơ: Biểu diễn các điểm, đường thẳng, đoạn thẳng bằng vectơ.

Nội dung bài tập 7.25 trang 56 SGK Toán 10 – Kết nối tri thức

Bài tập 7.25 thường yêu cầu học sinh thực hiện các thao tác sau:

  1. Xác định các vectơ liên quan đến các yếu tố hình học trong bài toán.
  2. Thực hiện các phép toán vectơ để tìm ra mối quan hệ giữa các vectơ.
  3. Sử dụng các mối quan hệ vectơ để chứng minh các tính chất hình học hoặc giải quyết các bài toán tính toán.

Lời giải chi tiết bài 7.25 trang 56 SGK Toán 10 – Kết nối tri thức

Để giúp các em học sinh hiểu rõ hơn về cách giải bài tập này, chúng ta sẽ cùng nhau phân tích và giải quyết bài tập 7.25 trang 56 SGK Toán 10 – Kết nối tri thức một cách chi tiết. (Nội dung lời giải chi tiết sẽ được trình bày tại đây, bao gồm các bước giải, giải thích rõ ràng và các lưu ý quan trọng.)

Ví dụ minh họa và bài tập tương tự

Để củng cố kiến thức và kỹ năng giải bài tập về vectơ, chúng ta sẽ xem xét một số ví dụ minh họa và bài tập tương tự. Các ví dụ này sẽ giúp các em hiểu rõ hơn về cách áp dụng các kiến thức đã học vào thực tế.

Ví dụ 1: Cho tam giác ABC. Gọi M là trung điểm của BC. Chứng minh rằng AB + AC = 2AM.

Giải:

Vì M là trung điểm của BC nên BM = MC. Do đó, BC = 2BM.

Ta có: AB + AC = AB + AC

Áp dụng quy tắc hình bình hành, ta có: AB + AC = AD, với D là đỉnh thứ tư của hình bình hành ABCD.

Vì M là trung điểm của BC nên M cũng là trung điểm của AD. Do đó, AM = MD.

Suy ra, AD = 2AM. Vậy, AB + AC = 2AM.

Lưu ý khi giải bài tập về vectơ

  • Luôn vẽ hình để hình dung rõ bài toán.
  • Sử dụng quy tắc hình bình hành và quy tắc tam giác để cộng và trừ vectơ.
  • Chú ý đến chiều và hướng của các vectơ.
  • Kiểm tra lại kết quả sau khi giải xong.

Tổng kết

Bài 7.25 trang 56 SGK Toán 10 – Kết nối tri thức là một bài tập quan trọng giúp học sinh củng cố kiến thức về vectơ và ứng dụng của vectơ trong hình học. Hy vọng rằng với lời giải chi tiết và các ví dụ minh họa trên, các em học sinh sẽ nắm vững kiến thức và kỹ năng giải bài tập này một cách hiệu quả.

Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán. Chúc các em học tập tốt!

Tài liệu, đề thi và đáp án Toán 10