Bài 7.20 trang 56 SGK Toán 10 – Kết nối tri thức là một bài tập quan trọng trong chương trình học Toán 10. Bài tập này yêu cầu học sinh vận dụng kiến thức về vectơ, các phép toán vectơ và ứng dụng của vectơ trong hình học để giải quyết.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 7.20 trang 56 SGK Toán 10 – Kết nối tri thức, giúp các em học sinh nắm vững kiến thức và rèn luyện kỹ năng giải bài tập.
Tìm tiêu điểm và tiêu cự của hyperbol.
Đề bài
Cho hyperbol có phương trình \(\frac{{{x^2}}}{7} - \frac{{{y^2}}}{9} = 1\). Tìm tiêu điểm và tiêu cự của hyperbol.
Phương pháp giải - Xem chi tiết
Tính \(c = \sqrt {{a^2} + {b^2}} \),
+ tiêu điểm \({F_1}\left( { - c;0} \right),{F_2}\left( {c;0} \right)\)
+ tiêu cự \({F_1}{F_2} = 2c\).
Lời giải chi tiết
Ta có: \({a^2} = 7,{b^2} = 9 \Rightarrow c = \sqrt {7 + 9} = 4\) nên hypebol có hai tiêu điểm là \({F_1}\left( { - 4;0} \right);{F_2}\left( {4;0} \right)\) và tiêu cự là \({F_1}{F_2} = 2c = 8\).
Bài 7.20 trang 56 SGK Toán 10 – Kết nối tri thức thuộc chương trình học Toán 10, tập trung vào việc vận dụng kiến thức về vectơ để giải quyết các bài toán hình học. Để giải bài tập này một cách hiệu quả, học sinh cần nắm vững các khái niệm cơ bản về vectơ, bao gồm:
Bài tập 7.20 thường yêu cầu học sinh thực hiện các thao tác sau:
Để giúp các em học sinh hiểu rõ hơn về cách giải bài tập này, chúng ta sẽ cùng nhau phân tích một ví dụ cụ thể. Giả sử bài tập yêu cầu:
Cho tam giác ABC. Gọi M là trung điểm của BC. Chứng minh rằng: overrightarrow{AM} = (overrightarrow{AB} +overrightarrow{AC})/2
Lời giải:
Vì M là trung điểm của BC, ta có: overrightarrow{BM} =overrightarrow{MC}. Do đó, overrightarrow{BC} = 2overrightarrow{BM}.
Ta có: overrightarrow{AM} =overrightarrow{AB} +overrightarrow{BM}. Thay overrightarrow{BM} = (1/2)overrightarrow{BC} vào, ta được:
overrightarrow{AM} =overrightarrow{AB} + (1/2)overrightarrow{BC}.
Mà overrightarrow{BC} =overrightarrow{AC} -overrightarrow{AB}, nên:
overrightarrow{AM} =overrightarrow{AB} + (1/2)(overrightarrow{AC} -overrightarrow{AB}) =overrightarrow{AB} + (1/2)overrightarrow{AC} - (1/2)overrightarrow{AB} = (1/2)overrightarrow{AB} + (1/2)overrightarrow{AC} = (overrightarrow{AB} +overrightarrow{AC})/2.
Vậy, overrightarrow{AM} = (overrightarrow{AB} +overrightarrow{AC})/2 (đpcm).
Để giải các bài tập về vectơ một cách nhanh chóng và chính xác, các em học sinh có thể tham khảo một số mẹo sau:
Để củng cố kiến thức và kỹ năng giải bài tập về vectơ, các em học sinh nên luyện tập thêm các bài tập tương tự trong SGK và các tài liệu tham khảo khác. Giaitoan.edu.vn cung cấp đầy đủ các lời giải chi tiết cho các bài tập trong chương trình Toán 10, giúp các em học tập hiệu quả hơn.
Bài 7.20 trang 56 SGK Toán 10 – Kết nối tri thức là một bài tập quan trọng giúp các em học sinh rèn luyện kỹ năng giải bài tập về vectơ. Hy vọng với lời giải chi tiết và các mẹo giải bài tập mà Giaitoan.edu.vn cung cấp, các em sẽ tự tin hơn trong việc học tập môn Toán.