Bài 4.11 trang 58 SGK Toán 10 tập 1 thuộc chương trình Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về vectơ và ứng dụng trong hình học. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức đã học để giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 4.11 trang 58 SGK Toán 10 tập 1, giúp các em học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.
Cho hình bình hành ABCD. Gọi M là trung điểm của cạnh BC. Hãy biểu thị AM theo hai vecto AB và AD.
Đề bài
Cho hình bình hành ABCD. Gọi M là trung điểm của cạnh BC. Hãy biểu thị \(\overrightarrow {AM} \) theo hai vecto \(\overrightarrow {AB} \) và \(\overrightarrow {AD} \).
Phương pháp giải - Xem chi tiết
Bước 1: Phân tích vecto \(\overrightarrow {AM} \) theo hai vecto cạnh.
Bước 2: Biểu thị hai vecto cạnh theo vecto \(\overrightarrow {AB} \), \(\overrightarrow {AD} \).
Lời giải chi tiết
Từ M kẻ đường thẳng song song với AB, cắt AD tại E.
Khi đó tứ giác ABME là hình bình hành.
Do đó: \(\overrightarrow {AM} = \overrightarrow {AB} + \overrightarrow {AE} \).
Dễ thấy: \(AE = BM = \frac{1}{2}BC = \frac{1}{2}AD\)
\( \Rightarrow \overrightarrow {AE} = \frac{1}{2}\overrightarrow {AD} \)
\( \Rightarrow \overrightarrow {AM} = \overrightarrow {AB} + \frac{1}{2}\overrightarrow {AD} \)
Vậy \(\overrightarrow {AM} = \overrightarrow {AB} + \frac{1}{2}\overrightarrow {AD} \)
Chú ý khi giải
+) Dựng hình hình hành sao cho đường chéo là vecto cần biểu thị, 2 cạnh của nó song song với giá của hai vecto đang biểu thị theo.
Bài 4.11 trang 58 SGK Toán 10 tập 1 – Kết nối tri thức yêu cầu chúng ta giải quyết một bài toán liên quan đến vectơ và ứng dụng trong hình học. Để giải bài toán này một cách hiệu quả, chúng ta cần nắm vững các kiến thức cơ bản về vectơ, bao gồm:
Trước khi đi vào giải bài toán, chúng ta cần phân tích đề bài một cách kỹ lưỡng để xác định rõ yêu cầu và các dữ kiện đã cho. Thông thường, bài toán sẽ cung cấp một hình vẽ hoặc một mô tả về một hình học nào đó, cùng với một số thông tin về các vectơ liên quan.
Dựa vào các dữ kiện đã cho, chúng ta cần xác định các vectơ cần tìm, các mối quan hệ giữa chúng và các công thức phù hợp để giải bài toán.
Để giúp các em học sinh hiểu rõ hơn về cách giải bài toán này, chúng ta sẽ đi vào giải chi tiết từng bước. Dưới đây là một ví dụ về lời giải bài 4.11 trang 58 SGK Toán 10 tập 1:
Đề bài: Cho tam giác ABC. Gọi M là trung điểm của BC. Chứng minh rằng overrightarrow{AM} = (overrightarrow{AB} +overrightarrow{AC})/2.
Lời giải:
Vì M là trung điểm của BC, ta có overrightarrow{BM} =overrightarrow{MC}. Theo quy tắc cộng vectơ, ta có:
overrightarrow{AB} +overrightarrow{BC} =overrightarrow{AC}
Mà overrightarrow{BC} = 2overrightarrow{BM}, nên overrightarrow{AB} + 2overrightarrow{BM} =overrightarrow{AC}
Suy ra overrightarrow{BM} = (overrightarrow{AC} -overrightarrow{AB})/2
Ta có overrightarrow{AM} =overrightarrow{AB} +overrightarrow{BM} =overrightarrow{AB} + (overrightarrow{AC} -overrightarrow{AB})/2 = (overrightarrow{AB} +overrightarrow{AC})/2
Vậy overrightarrow{AM} = (overrightarrow{AB} +overrightarrow{AC})/2 (đpcm)
Ngoài bài 4.11 trang 58 SGK Toán 10 tập 1, còn rất nhiều bài tập tương tự liên quan đến vectơ và ứng dụng trong hình học. Để giải các bài tập này một cách hiệu quả, chúng ta cần nắm vững các phương pháp sau:
Để củng cố kiến thức và rèn luyện kỹ năng giải bài tập về vectơ, các em học sinh có thể tham khảo thêm các bài tập sau:
Giaitoan.edu.vn hy vọng rằng với lời giải chi tiết và hướng dẫn cụ thể trên đây, các em học sinh sẽ hiểu rõ hơn về cách giải bài 4.11 trang 58 SGK Toán 10 tập 1 – Kết nối tri thức và tự tin giải các bài tập tương tự. Chúc các em học tập tốt!