Logo Header
  1. Môn Toán
  2. Giải bài 4.26 trang 70 SGK Toán 10 – Kết nối tri thức

Giải bài 4.26 trang 70 SGK Toán 10 – Kết nối tri thức

Giải bài 4.26 trang 70 SGK Toán 10 – Kết nối tri thức

Bài 4.26 trang 70 SGK Toán 10 thuộc chương trình Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về vectơ và ứng dụng trong hình học. Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài tập này, giúp các em học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.

Chúng tôi cung cấp không chỉ đáp án mà còn cả phương pháp giải, giúp các em hiểu rõ bản chất của bài toán và áp dụng vào các tình huống khác nhau.

Cho tam giác ABC có trọng tâm G. Chứng minh rằng với mọi điểm M, ta có

Đề bài

Cho tam giác ABC có trọng tâm G. Chứng minh rằng với mọi điểm M, ta có:

\(M{A^2} + M{B^2} + M{C^2} = 3M{G^2} + G{A^2} + G{B^2} + G{C^2}\)

Phương pháp giải - Xem chi tiếtGiải bài 4.26 trang 70 SGK Toán 10 – Kết nối tri thức 1

+) \(M{A^2} = {\overrightarrow {MA} ^2}\)

+) Với 3 điểm M, A, G bất kì ta có: \(\overrightarrow {MG} + \overrightarrow {GA} = \overrightarrow {MA} \)

+) G là trọng tâm tam giác ABC thì: \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow 0 \)

Lời giải chi tiết

Ta có:

 \(\begin{array}{l}M{A^2} + M{B^2} + M{C^2} = {\overrightarrow {MA} ^2} + {\overrightarrow {MB} ^2} + {\overrightarrow {MC} ^2}\\ = {\left( {\overrightarrow {MG} + \overrightarrow {GA} } \right)^2} + {\left( {\overrightarrow {MG} + \overrightarrow {GB} } \right)^2} + {\left( {\overrightarrow {MG} + \overrightarrow {GC} } \right)^2}\\ = {\overrightarrow {MG} ^2} + 2\overrightarrow {MG} .\overrightarrow {GA} + {\overrightarrow {GA} ^2} + {\overrightarrow {MG} ^2} + 2\overrightarrow {MG} .\overrightarrow {GB} + {\overrightarrow {GB} ^2} + {\overrightarrow {MG} ^2} + 2\overrightarrow {MG} .\overrightarrow {GC} + {\overrightarrow {GC} ^2}\\ = 3{\overrightarrow {MG} ^2} + 2\overrightarrow {MG} .\left( {\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} } \right) + {\overrightarrow {GA} ^2} + {\overrightarrow {GB} ^2} + {\overrightarrow {GC} ^2}\\ = 3{\overrightarrow {MG} ^2} + 2\overrightarrow {MG} .\overrightarrow 0 + {\overrightarrow {GA} ^2} + {\overrightarrow {GB} ^2} + {\overrightarrow {GC} ^2}\end{array}\)

( do G là trọng tâm tam giác ABC)

\(\begin{array}{l} = 3{\overrightarrow {MG} ^2} + {\overrightarrow {GA} ^2} + {\overrightarrow {GB} ^2} + {\overrightarrow {GC} ^2}\\ = 3M{G^2} + G{A^2} + G{B^2} + G{C^2}\end{array}\) (đpcm).

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 4.26 trang 70 SGK Toán 10 – Kết nối tri thức đặc sắc thuộc chuyên mục toán lớp 10 trên nền tảng soạn toán. Với bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải bài 4.26 trang 70 SGK Toán 10 – Kết nối tri thức: Hướng dẫn chi tiết

Bài 4.26 trang 70 SGK Toán 10 – Kết nối tri thức yêu cầu học sinh vận dụng kiến thức về vectơ để giải quyết một bài toán hình học cụ thể. Để giải bài toán này một cách hiệu quả, chúng ta cần nắm vững các khái niệm cơ bản về vectơ, bao gồm:

  • Vectơ: Định nghĩa, các phép toán trên vectơ (cộng, trừ, nhân với một số thực).
  • Tích vô hướng của hai vectơ: Công thức tính tích vô hướng, ứng dụng của tích vô hướng trong việc xác định góc giữa hai vectơ, kiểm tra tính vuông góc của hai vectơ.
  • Hệ tọa độ: Biểu diễn vectơ trong hệ tọa độ, các phép toán trên vectơ trong hệ tọa độ.

Phân tích bài toán

Trước khi đi vào giải bài toán cụ thể, chúng ta cần phân tích đề bài để xác định rõ yêu cầu và các dữ kiện đã cho. Thông thường, bài toán sẽ cung cấp thông tin về các điểm trong mặt phẳng hoặc không gian, và yêu cầu tính toán các đại lượng liên quan đến vectơ, chẳng hạn như độ dài vectơ, góc giữa hai vectơ, diện tích hình bình hành, thể tích khối hộp,…

Lời giải chi tiết

Để giải bài 4.26 trang 70 SGK Toán 10 – Kết nối tri thức, chúng ta thực hiện theo các bước sau:

  1. Bước 1: Chọn hệ tọa độ thích hợp. Việc lựa chọn hệ tọa độ phù hợp sẽ giúp đơn giản hóa bài toán và dễ dàng tính toán hơn.
  2. Bước 2: Xác định tọa độ của các điểm. Dựa vào dữ kiện đã cho, xác định tọa độ của các điểm trong hệ tọa độ đã chọn.
  3. Bước 3: Biểu diễn các vectơ liên quan. Sử dụng tọa độ của các điểm để biểu diễn các vectơ liên quan đến bài toán.
  4. Bước 4: Thực hiện các phép toán trên vectơ. Sử dụng các phép toán trên vectơ (cộng, trừ, nhân với một số thực, tích vô hướng) để tính toán các đại lượng cần tìm.
  5. Bước 5: Kết luận. Viết kết quả cuối cùng của bài toán.

Ví dụ minh họa

Giả sử bài toán yêu cầu tính độ dài của vectơ a = (2; -3). Ta thực hiện như sau:

Độ dài của vectơ a được tính bằng công thức:

|a| = √((2)^2 + (-3)^2) = √(4 + 9) = √13

Lưu ý quan trọng

Khi giải bài tập về vectơ, cần chú ý các điểm sau:

  • Nắm vững các định nghĩa và tính chất của vectơ.
  • Sử dụng đúng công thức tính toán.
  • Kiểm tra lại kết quả để đảm bảo tính chính xác.
  • Luyện tập thường xuyên để nâng cao kỹ năng giải bài tập.

Bài tập tương tự

Để củng cố kiến thức về vectơ, các em có thể tự giải các bài tập tương tự trong SGK Toán 10 – Kết nối tri thức hoặc các tài liệu tham khảo khác. Việc luyện tập thường xuyên sẽ giúp các em nắm vững kiến thức và tự tin giải các bài tập khó hơn.

Tổng kết

Bài 4.26 trang 70 SGK Toán 10 – Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về vectơ và ứng dụng trong hình học. Hy vọng với hướng dẫn chi tiết này, các em học sinh sẽ hiểu rõ cách giải bài tập và tự tin giải các bài tập tương tự. Chúc các em học tốt!

Khái niệmGiải thích
VectơMột đoạn thẳng có hướng.
Tích vô hướngMột phép toán giữa hai vectơ cho ra một số.

Tài liệu, đề thi và đáp án Toán 10