Bài 5.11 trang 88 SGK Toán 10 – Kết nối tri thức là một bài tập quan trọng trong chương trình học Toán 10. Bài tập này yêu cầu học sinh vận dụng kiến thức về vectơ, các phép toán vectơ và ứng dụng của vectơ trong hình học để giải quyết các bài toán cụ thể.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 5.11 trang 88 SGK Toán 10 – Kết nối tri thức, giúp các em học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.
Mỗi khẳng định sau đúng hay sai? (1) Nếu các giá trị của mẫu số liệu càng tập trung quanh giá trị trung bình thì độ lệch chuẩn càng lớn. (2) Khoảng biến thiên chỉ sử dụng thông tin của giá trị lớn nhất và bé nhất, bỏ qua thông tin của các giá trị còn lại. (3) Khoảng tứ phân vị có sử dụng thông tin của giá trị lớn nhất, giá trị bé nhất. (4) Khoảng tứ phân vị chính là khoảng biến thiên của nửa dưới mẫu số liệu đã sắp xếp. (5) Các số đo độ phân tán đều không âm.
Đề bài
Mỗi khẳng định sau đúng hay sai?
(1) Nếu các giá trị của mẫu số liệu càng tập trung quanh giá trị trung bình thì độ lệch chuẩn càng lớn.
(2) Khoảng biến thiên chỉ sử dụng thông tin của giá trị lớn nhất và bé nhất, bỏ qua thông tin của các giá trị còn lại.
(3) Khoảng tứ phân vị có sử dụng thông tin của giá trị lớn nhất, giá trị bé nhất.
(4) Khoảng tứ phân vị chính là khoảng biến thiên của nửa dưới mẫu số liệu đã sắp xếp.
(5) Các số đo độ phân tán đều không âm.
Lời giải chi tiết
Khẳng định (1): Nếu các giá trị của mẫu số liệu càng tập trung quanh giá trị trung bình thì độ lệch của mỗi giá trị so với giá trị trung bình càng nhỏ (tức là \({x_i} - \overline x \) càng nhỏ, với \(i = 1;2;...;n\)), dẫn đến độ lệch chuẩn càng nhỏ.
\(\Rightarrow\) (1) Sai.
Khẳng định (2): Khoảng biến thiên R bằng hiệu số giữa giá trị lớn nhất và giá trị nhỏ nhất nên chỉ sử dụng thông tin của giá trị lớn nhất và bé nhất.
\(\Rightarrow\) (2) Đúng.
Khẳng định (3): Khoảng tứ phân vị \({\Delta _Q} = {Q_3} - {Q_1}\), các giá trị \({Q_1},{Q_3}\) không bị ảnh hưởng bởi giá trị của giá trị lớn nhất và giá trị nhỏ nhất (với n > 4).
\(\Rightarrow\) (3) Sai.
Khẳng định (4): Khoảng tứ phân vị chính là khoảng biến thiên của 50% số liệu chính giữa của mẫu số liệu đã sắp xếp.
\(\Rightarrow\) (4) Sai.
Khẳng định (5): Các số đo độ phân tán là:
Khoảng biến thiên R = Số lớn nhất – Số nhỏ nhất > 0.
Trước khi tính khoảng tứ phân vị thì mẫu số liệu được sắp xếp theo thứ tự không giảm
\(\Rightarrow\) \({Q_3} > {Q_1}\) \(\Rightarrow\) \({\Delta _Q} = {Q_3} - {Q_1} > 0\).
Phương sai \({s^2} = \frac{{{{\left( {{x_1} - \overline x} \right)}^2} + {{\left( {{x_2} - \overline x} \right)}^2} + ... + {{\left( {{x_n} - \overline x} \right)}^2}}}{n} \ge 0\).
Độ lệch chuẩn: \(s = \sqrt {{s^2}} \ge 0\).
\(\Rightarrow\) Các số đo độ phân tán đều không âm.
\(\Rightarrow\) (5) Đúng.
Bài 5.11 trang 88 SGK Toán 10 – Kết nối tri thức thuộc chương 1: Vectơ trong mặt phẳng. Bài toán này thường yêu cầu học sinh sử dụng các kiến thức về:
Trước khi đi vào giải bài tập, chúng ta cần đọc kỹ đề bài, xác định rõ các yếu tố đã cho và yêu cầu của bài toán. Thông thường, bài toán sẽ cho một hình vẽ hoặc một số thông tin về các điểm, vectơ trong mặt phẳng. Dựa vào đó, chúng ta cần:
(Nội dung lời giải chi tiết bài 5.11 sẽ được trình bày tại đây. Bao gồm các bước giải, giải thích rõ ràng, sử dụng hình vẽ minh họa nếu cần thiết. Lời giải cần đảm bảo tính chính xác, dễ hiểu và logic.)
Để giúp các em hiểu rõ hơn về cách giải bài tập này, chúng ta sẽ xem xét một ví dụ minh họa:
(Nội dung ví dụ minh họa sẽ được trình bày tại đây. Ví dụ cần tương tự như bài 5.11, nhưng có thể đơn giản hơn để dễ hiểu.)
Để củng cố kiến thức và kỹ năng giải bài tập về vectơ, các em có thể luyện tập thêm các bài tập sau:
Dưới đây là một số mẹo giúp các em giải bài tập vectơ hiệu quả hơn:
Bài 5.11 trang 88 SGK Toán 10 – Kết nối tri thức là một bài tập quan trọng giúp các em củng cố kiến thức về vectơ và ứng dụng của vectơ trong hình học. Hy vọng với lời giải chi tiết và các ví dụ minh họa trên, các em sẽ hiểu rõ hơn về cách giải bài tập này và tự tin giải các bài tập tương tự.
Công thức | Mô tả |
---|---|
a = (x; y) | Vectơ a có tọa độ (x; y) |
a + b = (x1 + x2; y1 + y2) | Phép cộng vectơ |
k.a = (kx; ky) | Phép nhân vectơ với một số thực |
a.b = x1.x2 + y1.y2 | Tích vô hướng của hai vectơ |