Bài 7.9 trang 41 SGK Toán 10 – Kết nối tri thức là một bài tập quan trọng trong chương trình học Toán 10. Bài tập này yêu cầu học sinh vận dụng kiến thức về vectơ để giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 7.9 trang 41 SGK Toán 10 – Kết nối tri thức, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.
Trong mặt phẳng toạ độ Oxy, cho điểm A(0; -2) và đường thẳng x + y - 4 = 0.
Đề bài
Trong mặt phẳng toạ độ Oxy, cho điểm A(0; -2) và đường thẳng \(\Delta \): x + y - 4 = 0.
a) Tính khoảng cách từ điểm A đến đường thẳng \(\Delta \).
b) Viết phương trình đường thẳng a đi qua điểm M(-1; 0) và song song với \(\Delta \).
c) Viết phương trình đường thẳng b đi qua điểm N(0; 3) và vuông góc với \(\Delta \)
Phương pháp giải - Xem chi tiết
a) Sử dụng công thức khoảng cách từ một điểm đến một đường thẳng
b) Đường thẳng a đi qua M và có vecto pháp tuyến là \(\overrightarrow {{n_a}} = \overrightarrow {{n_\Delta }} \)
c) Đường thẳng b đi qua N và có vecto chỉ phương là \(\overrightarrow {{u_b}} = \overrightarrow {{n_\Delta }} \)
Lời giải chi tiết
a) Khoảng cách từ điểm A đến đường thẳng \(\Delta \) là: \(d\left( {A,\Delta } \right) = \frac{{\left| {0 - 2 - 4} \right|}}{{\sqrt {{1^2} + {1^2}} }} = 3\sqrt 2 \).
b) Ta có: \(\overrightarrow {{n_a}} = \overrightarrow {{n_\Delta }} = \left( {1;1} \right)\). Phương trình đường thẳng a là:
\(1\left( {x + 1} \right) + 1\left( {y - 0} \right) = 0 \Leftrightarrow x + y + 1 = 0\)
c) Ta có: \(\overrightarrow {{u_b}} = \overrightarrow {{n_\Delta }} = \left( {1;1} \right)\).Từ đó suy ra \(\overrightarrow {{n_b}} = \left( {1; - 1} \right)\). Phương trình đường thẳng b là:
\(1\left( {x - 0} \right) - 1\left( {y - 3} \right) = 0 \Leftrightarrow x - y + 3 = 0\)
Bài 7.9 trang 41 SGK Toán 10 – Kết nối tri thức thuộc chương trình học về vectơ trong không gian. Để giải bài tập này, học sinh cần nắm vững các kiến thức cơ bản về:
Bài tập 7.9 yêu cầu học sinh chứng minh một đẳng thức vectơ liên quan đến trung điểm của các cạnh trong một hình bình hành. Cụ thể, cho hình bình hành ABCD, gọi M, N lần lượt là trung điểm của các cạnh AB và CD. Chứng minh rằng: overrightarrow{AM} =overrightarrow{NC}.
Để chứng minh đẳng thức vectơ này, chúng ta có thể sử dụng các bước sau:
Gọi A là gốc tọa độ (0;0). Đặt overrightarrow{AB} = a vàoverrightarrow{AD} = b. Khi đó:
overrightarrow{AM} = 1/2overrightarrow{AB} = 1/2a
overrightarrow{DC} =overrightarrow{AB} = a
overrightarrow{NC} = 1/2overrightarrow{DC} = 1/2a
Vậy, overrightarrow{AM} =overrightarrow{NC} (đpcm).
Để củng cố kiến thức về vectơ, các em có thể làm thêm các bài tập tương tự trong SGK và sách bài tập Toán 10. Ngoài ra, các em cũng có thể tìm hiểu thêm về các ứng dụng của vectơ trong các lĩnh vực khác như vật lý, kỹ thuật.
Ví dụ, xét bài toán sau:
Cho tam giác ABC, gọi G là trọng tâm của tam giác. Chứng minh rằng: overrightarrow{GA} +overrightarrow{GB} +overrightarrow{GC} =overrightarrow{0}.
Bài toán này yêu cầu học sinh vận dụng kiến thức về trọng tâm của tam giác và các phép toán vectơ để giải quyết.
Bài 7.9 trang 41 SGK Toán 10 – Kết nối tri thức là một bài tập quan trọng giúp học sinh hiểu rõ hơn về vectơ và ứng dụng của nó trong hình học. Hy vọng với lời giải chi tiết và phương pháp giải được trình bày ở trên, các em học sinh sẽ tự tin hơn khi làm bài tập về vectơ.
Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán. Chúc các em học tập tốt!