Bài 4.15 trang 59 SGK Toán 10 tập 1 thuộc chương trình Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về vectơ và ứng dụng trong hình học. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức đã học để giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 4.15 trang 59 SGK Toán 10 tập 1, giúp các em học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.
Chất điểm A chịu tác động của ba lực F1, F2, F3 như hình 4.30 và ở trạng thái cân bằng
Đề bài
Chất điểm A chịu tác động của ba lực \(\overrightarrow {{F_1}} ,\;\overrightarrow {{F_2}} ,\;\overrightarrow {{F_3}} \) như hình 4.30 và ở trạng thái cân bằng (tức là \(\overrightarrow {{F_1}} + \;\overrightarrow {{F_2}} + \;\overrightarrow {{F_3}} = \overrightarrow 0 \)). Tính độ lớn của các lực \(\overrightarrow {{F_2}} ,\;\overrightarrow {{F_3}} \) biết \(\overrightarrow {{F_1}} \) có độ lớn là 20N.
Phương pháp giải - Xem chi tiết
Bước 1: Xác định vecto \(\overrightarrow u = \overrightarrow {{F_1}} + \;\overrightarrow {{F_2}} \). Từ trạng thái của chất điểm suy ra mối liên hệ (phương, chiều, độ lớn) giữa \(\overrightarrow u \) và \(\overrightarrow {{F_3}} \).
Bước 2: Tính độ lớn của \(\overrightarrow {{F_2}} ,\;\overrightarrow {{F_3}} \).
Lời giải chi tiết
Bước 1: Đặt \(\overrightarrow u = \overrightarrow {{F_1}} + \;\overrightarrow {{F_2}} \). Ta xác định các điểm như hình dưới.
Dễ dàng xác định điểm C, là điểm thứ tư của hình bình hành ABCD. Do đó vecto \(\overrightarrow u \) chính là vecto \(\overrightarrow {AC} \)
Vì chất điểm A ở trang thái cân bằng nên \(\overrightarrow {{F_1}} + \;\overrightarrow {{F_2}} + \;\overrightarrow {{F_3}} = \overrightarrow 0 \) hay \(\;\overrightarrow u + \;\overrightarrow {{F_3}} = \overrightarrow 0 \)
\( \Leftrightarrow \;\overrightarrow u \) và \(\;\overrightarrow {{F_3}} \) là hai vecto đối nhau.
\( \Leftrightarrow A\) là trung điểm của EC.
Bước 2:
Ta có: \(\left| {\overrightarrow {{F_1}} } \right| = AD = 20,\;\left| {\overrightarrow {{F_2}} } \right| = AB,\;\left| {\overrightarrow {{F_3}} } \right| = AC.\)
Do A, C, E thẳng hàng nên \(\widehat {CAB} = {180^o} - \widehat {EAB} = {60^o}\)
\(\begin{array}{l} \Rightarrow \widehat {CAD} = {90^o} - {60^o} = {30^o}\\ \Rightarrow \left\{ \begin{array}{l}AC = \frac{{AD}}{{\cos {{30}^o}}} = \frac{{40\sqrt 3 }}{3};\;\\AB = DC = AC.\sin {30^o} = \frac{{20\sqrt 3 }}{3}.\end{array} \right.\end{array}\)
Vậy \(\;\left| {\overrightarrow {{F_2}} } \right| = \frac{{20\sqrt 3 }}{3},\;\;\left| {\overrightarrow {{F_3}} } \right| = \frac{{40\sqrt 3 }}{3}.\)
Bài 4.15 trang 59 SGK Toán 10 tập 1 – Kết nối tri thức yêu cầu học sinh giải quyết một bài toán liên quan đến vectơ và ứng dụng trong hình học. Để giải bài tập này một cách hiệu quả, chúng ta cần nắm vững các kiến thức cơ bản về vectơ, bao gồm:
Phân tích bài toán:
Trước khi bắt đầu giải bài tập, chúng ta cần đọc kỹ đề bài và xác định rõ yêu cầu của bài toán. Sau đó, chúng ta cần phân tích bài toán để tìm ra các mối liên hệ giữa các yếu tố đã cho và các yếu tố cần tìm. Việc vẽ hình minh họa cũng rất quan trọng, giúp chúng ta hình dung rõ hơn về bài toán và tìm ra hướng giải quyết.
Lời giải chi tiết:
(Nội dung lời giải chi tiết bài 4.15 trang 59 SGK Toán 10 tập 1 – Kết nối tri thức sẽ được trình bày tại đây. Lời giải cần bao gồm các bước giải rõ ràng, dễ hiểu, có giải thích chi tiết từng bước. Sử dụng các ký hiệu toán học chính xác và trình bày một cách logic.)
Ví dụ minh họa:
(Cung cấp một ví dụ minh họa tương tự bài 4.15 để giúp học sinh hiểu rõ hơn về cách giải bài tập. Ví dụ này cần có lời giải chi tiết và giải thích rõ ràng.)
Lưu ý quan trọng:
Mở rộng kiến thức:
Để hiểu sâu hơn về vectơ và ứng dụng trong hình học, các em có thể tham khảo thêm các tài liệu sau:
Bài tập tương tự:
(Liệt kê một số bài tập tương tự bài 4.15 để học sinh tự luyện tập. Các bài tập này cần có độ khó tương đương và yêu cầu vận dụng các kiến thức tương tự.)
Hy vọng với lời giải chi tiết và hướng dẫn cụ thể này, các em học sinh sẽ tự tin giải bài 4.15 trang 59 SGK Toán 10 tập 1 – Kết nối tri thức và đạt kết quả tốt trong môn Toán.
Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục kiến thức Toán học. Chúc các em học tập tốt!