Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 9 tập 2. Bài viết này sẽ hướng dẫn bạn giải bài tập 16 trang 23 SGK Toán 9 tập 2 - Chân trời sáng tạo một cách nhanh chóng và hiệu quả.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, chúng tôi đã biên soạn lời giải chi tiết, kèm theo các bước giải rõ ràng, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Một đội thợ mỏ phải khai thác 216 tấn than trong một thời gian nhất định. Ba ngày đầu, mỗi ngày khai thác theo đúng định mức. Sau đó, mỗi ngày họ đều khai thác vượt mức 8 tấn. Do đó họ đã khai thác được 232 tấn và xog trước thời hạn 1 ngày. Hỏi theo kế hoạch, mỗi ngày đội thợ phải khai thác bao nhiêu tấn than?
Đề bài
Một đội thợ mỏ phải khai thác 216 tấn than trong một thời gian nhất định. Ba ngày đầu , mỗi ngày khai thác theo đúng định mức. Sau đó, mỗi ngày họ đều khai thác vượt mức 8 tấn. Do đó họ đã khai thác được 232 tấn và xog trước thời hạn 1 ngày. Hỏi theo kế hoạch, mỗi ngày đội thợ phải khai thác bao nhiêu tấn than?
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Dựa vào để giải bài toán bằng cách lập phương trình bậc hai như sau:
B1: Lập phương trình
+ Chọn ẩn và đặt điều kiện thích hợp cho ẩn.
+ Biểu diễn các đại lượng chưa biết theo ẩn và các đại lượng đã biết.
+ Lập phương trình biểu thị mối quan hệ giữa các đại lượng.
B2: Giải phương trình nói trên.
B3: Kiểm tra các nghiệm tìm được ở B2 có thỏa mãn điều kiện của ẩn hay không rồi trả lời bài toán.
Lời giải chi tiết
Gọi x (tấn) là lượng than mà đội khai thác mỗi ngày theo kế hoạch ( x > 0)
Sau 3 ngày đầu, mỗi ngày đội khai thác x + 8 (tấn)
Thời gian dự định khai thác là \(\frac{{216}}{x}\) (ngày)
Lượng than khai thác 3 ngày đầu là 3x (tấn)
Lượng than khai thác trong những ngày còn lại là 232 – 3x (tấn)
Thời gian đội khai thác 232 – 3x tấn than là: \(\frac{{232 - 3x}}{{x + 8}}\) (ngày)
Theo bài ra ta có phương trình: \(\frac{{216}}{x} - 1 = 3 + \frac{{232 - 3x}}{{x + 8}}\)
Biến đổi phương trình trên, ta được:
\({x^2} + 48x - 1728 = 0\)
Giải phương trình trên, ta được \({x_1} = 24(TM),{x_2} = - 72(L)\)
Vậy theo kế hoạch, mỗi ngày đội thợ phải khai thác 24 tấn than.
Bài tập 16 trang 23 SGK Toán 9 tập 2 - Chân trời sáng tạo thuộc chương trình học Toán 9, tập trung vào việc vận dụng kiến thức về hàm số bậc nhất và hàm số bậc hai để giải quyết các bài toán thực tế. Bài tập này yêu cầu học sinh phải hiểu rõ các khái niệm về hệ số góc, giao điểm của đồ thị hàm số, và cách xác định phương trình đường thẳng.
Bài tập 16 thường bao gồm các dạng bài sau:
Để giải bài tập 16 trang 23 SGK Toán 9 tập 2 - Chân trời sáng tạo một cách hiệu quả, bạn có thể tham khảo các bước sau:
Bài toán: Tìm tọa độ giao điểm của hai đường thẳng y = 2x + 1 và y = -x + 4.
Giải:
Để tìm tọa độ giao điểm của hai đường thẳng, ta giải hệ phương trình sau:
y = 2x + 1 | (1) |
y = -x + 4 | (2) |
Từ (1) và (2) suy ra: 2x + 1 = -x + 4
=> 3x = 3
=> x = 1
Thay x = 1 vào (1) ta được: y = 2(1) + 1 = 3
Vậy tọa độ giao điểm của hai đường thẳng là (1; 3).
Ngoài SGK Toán 9 tập 2 - Chân trời sáng tạo, bạn có thể tham khảo thêm các tài liệu sau:
Hy vọng rằng bài viết này đã cung cấp cho bạn những kiến thức và kỹ năng cần thiết để giải bài tập 16 trang 23 SGK Toán 9 tập 2 - Chân trời sáng tạo một cách hiệu quả. Chúc bạn học tập tốt!