Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 9 tập 1 - Chân trời sáng tạo. Bài viết này sẽ hướng dẫn bạn từng bước giải bài tập 4 trang 10, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Chúng tôi luôn cố gắng mang đến những giải pháp học tập hiệu quả nhất, đồng hành cùng bạn trên con đường chinh phục môn Toán.
Một người đi xe đạp từ A đến B cách nhau 60km. Sau 1 giờ 40 phút, trên cùng quãng đường đó, một xe máy cũng đi từ A đến B và đến B sớm hơn xe đạp 1 giờ. Tính tốc độ của mỗi xe, biết rằng tốc độ của xe máy gấp 3 lần tốc độ của xe đạp.
Đề bài
Một người đi xe đạp từ A đến B cách nhau 60km. Sau 1 giờ 40 phút, trên cùng quãng đường đó, một xe máy cũng đi từ A đến B và đến B sớm hơn xe đạp 1 giờ. Tính tốc độ của mỗi xe, biết rằng tốc độ của xe máy gấp 3 lần tốc độ của xe đạp.
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
- Gọi tốc độ của xe đạp là \(x\) (km/h), \(x > 0\).
- Biểu diễn các đại lượng liên quan theo ẩn \(x\) bằng công thức \(s = v.t\).
- Dựa vào dữ kiện bài toán để lập phương trình ẩn \(x\).
- Giải phương trình nhận được.
Lời giải chi tiết
Gọi tốc độ của xe đạp là \(x\) (km/h), \(x > 0\).
Thời gian xe đạp đi quãng đường từ A đến B là \(\frac{{60}}{x}\) (giờ).
Tốc độ của xe máy là \(3x\) (km/h).
Thời gian xe máy đi quãng đường từ A đến B là \(\frac{{60}}{{3x}} = \frac{{20}}{x}\) (giờ).
Đổi 1 giờ 40 phút = \(\frac{5}{3}\) giờ.
Vì xe máy xuất phát sau xe đáp 1 giờ 40 phút và đến sớm hơn xe đạp 1 giờ nên ta có phương trình:
\(\begin{array}{l}\frac{{60}}{x} - \frac{{20}}{x} = \frac{5}{3} + 1\\\frac{{40}}{x} = \frac{8}{3}\\\frac{{40.3}}{{3x}} = \frac{{8x}}{{3x}}\\120 = 8x\\x = 15\end{array}\)
Ta thấy \(x = 15\) thỏa mãn điều kiện \(x > 0\).
Vậy tốc độ của xe đạp là 15km/h; tốc độ của xe máy là 45km/h.
Bài tập 4 trang 10 SGK Toán 9 tập 1 - Chân trời sáng tạo thuộc chương trình học về hàm số bậc nhất. Để giải bài tập này, học sinh cần nắm vững các kiến thức cơ bản về hàm số, cách xác định hệ số góc và tung độ gốc, cũng như các tính chất của hàm số.
Bài tập yêu cầu học sinh xác định hàm số bậc nhất có dạng y = ax + b dựa vào các thông tin cho trước, ví dụ như đồ thị hàm số, các điểm thuộc đồ thị, hoặc các điều kiện khác. Sau đó, học sinh cần sử dụng hàm số vừa tìm được để giải các bài toán liên quan.
Đề bài: Cho đồ thị hàm số đi qua các điểm A(0; 2) và B(2; 6). Hãy xác định hàm số bậc nhất có dạng y = ax + b.
Giải:
Ngoài dạng bài tập xác định hàm số bậc nhất dựa vào các điểm, còn có các dạng bài tập khác như:
Để giải các dạng bài tập này, học sinh cần nắm vững các kiến thức về hàm số bậc nhất, các tính chất của hàm số, và các phương pháp giải toán đại số.
Ngoài SGK Toán 9 tập 1 - Chân trời sáng tạo, học sinh có thể tham khảo thêm các tài liệu sau để học tập và ôn luyện:
Bài tập 4 trang 10 SGK Toán 9 tập 1 - Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về hàm số bậc nhất. Hy vọng với hướng dẫn chi tiết và các ví dụ minh họa trên, các bạn học sinh sẽ tự tin hơn trong quá trình giải bài tập và học tập môn Toán.