Giaitoan.edu.vn xin giới thiệu lời giải chi tiết mục 2 trang 71 SGK Toán 9 tập 2 - Chân trời sáng tạo. Bài giải được trình bày rõ ràng, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.
Chúng tôi luôn cập nhật nhanh chóng và chính xác các lời giải bài tập Toán 9, đáp ứng nhu cầu học tập của học sinh trên toàn quốc.
Cho tứ giác ABCD nội tiếp đường tròn (O) (Hình 4). a) Chỉ ra các cung chắn bởi mỗi góc nội tiếp (widehat {DAB}) và (widehat {DCB}) b) Tính tổng số đo của các cung vừa tìm được. c) Nêu kết luận về tổng số đo của hai góc (widehat {DAB}) và (widehat {DCB}). d) Có nhận xét gì về tổng số đo của hai góc đối diện còn lại của tứ giác ABCD?
Video hướng dẫn giải
Trả lời câu hỏi Thực hành 2 trang 71SGK Toán 9 Chân trời sáng tạo
Tìm số đo các góc chưa biết của tứ giác ABCD trong Hình 6.
Phương pháp giải:
Dựa vào: Trong một tứ giác nội tiếp, tổng số đo hai góc đối nhau bằng 180o.
Lời giải chi tiết:
Tứ giác ABCD là tứ giác nội tiếp.
Do đó \(\widehat A + \widehat C = {180^o}\) suy ra \(\widehat A = {180^o} - \widehat C = {180^o} - {93^o} = {87^o}\).
\(\widehat B + \widehat D = {180^o}\) suy ra \(\widehat D = {180^o} - \widehat B = {180^o} - {57^o} = {123^o}\).
Video hướng dẫn giải
Trả lời câu hỏi Vận dụng 2 trang 71SGK Toán 9 Chân trời sáng tạo
Trong hình vẽ minh họa của học sinh có một tứ giác ABCD nội tiếp đường tròn tâm O (Hình 7). Cho biết \(\widehat {ABC}\) = 70o, \(\widehat {OCD}\) = 50o. Tìm góc \(\widehat {AOD}\).
Phương pháp giải:
Dựa vào: Trong một tứ giác nội tiếp, tổng số đo hai góc đối nhau bằng 180o.
Lời giải chi tiết:
Tứ giác ABCD là tứ giác nội tiếp.
Do đó \(\widehat {ABC} + \widehat {ADC} = {180^o}\) suy ra \(\widehat {ADC} = {180^o} - \widehat {ABC} = {180^o} - {70^o} = {110^o}\).
Mà \(\widehat {ADO} + \widehat {OCD} = \widehat {ADC}\) suy ra \(\widehat {ADO} = {110^o} - {50^o} = {60^o}\).
Vì OA = OD = R nên tam giác OAD cân tại O
Suy ra \(\widehat {OAD} = \widehat {ADO} = {60^o}\) (tính chất tam giác cân)
Vậy tam giác OAD đều suy ra \(\widehat {AOD} = {60^o}\).
Video hướng dẫn giải
Trả lời câu hỏi Hoạt động 2 trang 71 SGK Toán 9 Chân trời sáng tạo
Cho tứ giác ABCD nội tiếp đường tròn (O) (Hình 4).
a) Chỉ ra các cung chắn bởi mỗi góc nội tiếp \(\widehat {DAB}\) và \(\widehat {DCB}\)
b) Tính tổng số đo của các cung vừa tìm được.
c) Nêu kết luận về tổng số đo của hai góc \(\widehat {DAB}\) và \(\widehat {DCB}\).
d) Có nhận xét gì về tổng số đo của hai góc đối diện còn lại của tứ giác ABCD?
Phương pháp giải:
- Dựa vào tính chất của số đo góc nội tiếp bằng \(\frac{1}{2}\) số đo cung bị chắn.
- Dựa vào tổng các góc của tứ giác bằng 360o.
Lời giải chi tiết:
a) Góc \(\widehat {DAB}\) là góc nội tiếp chắn cung BD nhỏ.
Góc \(\widehat {DCB}\) là góc nội tiếp chắn cung BD lớn.
b) số đo cung BD nhỏ + số đo cung BD lớn = 360o
c)
- Góc \(\widehat {DAB}\) là góc nội tiếp chắn cung BD nhỏ.
Suy ra \(\widehat {DAB} = \frac{1}{2}\) số đo cung BD nhỏ.
- Góc \(\widehat {DCB}\) là góc nội tiếp chắn cung BD lớn.
Suy ra \(\widehat {DCB} = \frac{1}{2}\) số đo cung BD lớn.
Ta có \(\widehat {DAB} + \widehat {DCB} = \frac{1}{2}\) (số đo cung BD nhỏ + số đo cung BD lớn)
= \(\frac{1}{2}\).360o = 180o.
d) Tổng số đo của hai góc đối diện còn lại của tứ giác ABCD là 180o
(vì 360o – 180o = 180o).
Video hướng dẫn giải
Trả lời câu hỏi Hoạt động 2 trang 71 SGK Toán 9 Chân trời sáng tạo
Cho tứ giác ABCD nội tiếp đường tròn (O) (Hình 4).
a) Chỉ ra các cung chắn bởi mỗi góc nội tiếp \(\widehat {DAB}\) và \(\widehat {DCB}\)
b) Tính tổng số đo của các cung vừa tìm được.
c) Nêu kết luận về tổng số đo của hai góc \(\widehat {DAB}\) và \(\widehat {DCB}\).
d) Có nhận xét gì về tổng số đo của hai góc đối diện còn lại của tứ giác ABCD?
Phương pháp giải:
- Dựa vào tính chất của số đo góc nội tiếp bằng \(\frac{1}{2}\) số đo cung bị chắn.
- Dựa vào tổng các góc của tứ giác bằng 360o.
Lời giải chi tiết:
a) Góc \(\widehat {DAB}\) là góc nội tiếp chắn cung BD nhỏ.
Góc \(\widehat {DCB}\) là góc nội tiếp chắn cung BD lớn.
b) số đo cung BD nhỏ + số đo cung BD lớn = 360o
c)
- Góc \(\widehat {DAB}\) là góc nội tiếp chắn cung BD nhỏ.
Suy ra \(\widehat {DAB} = \frac{1}{2}\) số đo cung BD nhỏ.
- Góc \(\widehat {DCB}\) là góc nội tiếp chắn cung BD lớn.
Suy ra \(\widehat {DCB} = \frac{1}{2}\) số đo cung BD lớn.
Ta có \(\widehat {DAB} + \widehat {DCB} = \frac{1}{2}\) (số đo cung BD nhỏ + số đo cung BD lớn)
= \(\frac{1}{2}\).360o = 180o.
d) Tổng số đo của hai góc đối diện còn lại của tứ giác ABCD là 180o
(vì 360o – 180o = 180o).
Video hướng dẫn giải
Trả lời câu hỏi Thực hành 2 trang 71SGK Toán 9 Chân trời sáng tạo
Tìm số đo các góc chưa biết của tứ giác ABCD trong Hình 6.
Phương pháp giải:
Dựa vào: Trong một tứ giác nội tiếp, tổng số đo hai góc đối nhau bằng 180o.
Lời giải chi tiết:
Tứ giác ABCD là tứ giác nội tiếp.
Do đó \(\widehat A + \widehat C = {180^o}\) suy ra \(\widehat A = {180^o} - \widehat C = {180^o} - {93^o} = {87^o}\).
\(\widehat B + \widehat D = {180^o}\) suy ra \(\widehat D = {180^o} - \widehat B = {180^o} - {57^o} = {123^o}\).
Video hướng dẫn giải
Trả lời câu hỏi Vận dụng 2 trang 71SGK Toán 9 Chân trời sáng tạo
Trong hình vẽ minh họa của học sinh có một tứ giác ABCD nội tiếp đường tròn tâm O (Hình 7). Cho biết \(\widehat {ABC}\) = 70o, \(\widehat {OCD}\) = 50o. Tìm góc \(\widehat {AOD}\).
Phương pháp giải:
Dựa vào: Trong một tứ giác nội tiếp, tổng số đo hai góc đối nhau bằng 180o.
Lời giải chi tiết:
Tứ giác ABCD là tứ giác nội tiếp.
Do đó \(\widehat {ABC} + \widehat {ADC} = {180^o}\) suy ra \(\widehat {ADC} = {180^o} - \widehat {ABC} = {180^o} - {70^o} = {110^o}\).
Mà \(\widehat {ADO} + \widehat {OCD} = \widehat {ADC}\) suy ra \(\widehat {ADO} = {110^o} - {50^o} = {60^o}\).
Vì OA = OD = R nên tam giác OAD cân tại O
Suy ra \(\widehat {OAD} = \widehat {ADO} = {60^o}\) (tính chất tam giác cân)
Vậy tam giác OAD đều suy ra \(\widehat {AOD} = {60^o}\).
Mục 2 trang 71 SGK Toán 9 tập 2 - Chân trời sáng tạo thường xoay quanh các bài toán liên quan đến hàm số bậc hai, bao gồm việc xác định hệ số, tìm đỉnh parabol, vẽ đồ thị hàm số và giải các bài toán ứng dụng thực tế. Việc nắm vững kiến thức về hàm số bậc hai là nền tảng quan trọng cho các chương trình học toán ở cấp trung học phổ thông.
Để giải quyết các bài tập trong mục 2 trang 71, học sinh cần hiểu rõ các khái niệm cơ bản sau:
Bài tập: Cho hàm số y = 2x2 - 4x + 1. Hãy tìm tọa độ đỉnh của parabol.
Giải:
Ngoài việc tìm tọa độ đỉnh, học sinh còn có thể gặp các dạng bài tập sau:
Để giải các bài tập trong mục 2 trang 71 một cách hiệu quả, học sinh nên:
Học sinh có thể tham khảo thêm các tài liệu sau để hiểu rõ hơn về hàm số bậc hai:
Giải mục 2 trang 71 SGK Toán 9 tập 2 - Chân trời sáng tạo đòi hỏi học sinh phải nắm vững kiến thức về hàm số bậc hai và rèn luyện kỹ năng giải toán thường xuyên. Hy vọng với những hướng dẫn chi tiết và ví dụ minh họa trên, các em học sinh sẽ tự tin hơn trong việc giải quyết các bài tập toán học.