Logo Header
  1. Môn Toán
  2. Giải bài tập 2 trang 60 SGK Toán 9 tập 2 - Chân trời sáng tạo

Giải bài tập 2 trang 60 SGK Toán 9 tập 2 - Chân trời sáng tạo

Giải bài tập 2 trang 60 SGK Toán 9 tập 2 - Chân trời sáng tạo

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài tập 2 trang 60 SGK Toán 9 tập 2 - Chân trời sáng tạo. Bài viết này sẽ giúp học sinh nắm vững kiến thức, hiểu rõ phương pháp giải và tự tin làm bài tập.

Chúng tôi cung cấp đáp án chính xác, dễ hiểu cùng với các bước giải cụ thể, giúp bạn học Toán 9 một cách hiệu quả nhất.

Một chiếc hộp có chứa 5 tấm thẻ cùng loại, được đánh số lần lượt là 3; 5; 6; 7; 9. Lấy ngẫu nhiên đồng thời 2 tấm thẻ từ hộp. a) Xác định không gian mẫu và số kết quả có thể xảy ra của phép thử. b) Tính xác suất của mỗi biến cố sau: A: “Tích các số ghi trên 2 tấm thẻ chia hết cho 3”; B: “Tổng các số ghi trên 2 tấm thẻ lớn hơn 13”.

Đề bài

Một chiếc hộp có chứa 5 tấm thẻ cùng loại, được đánh số lần lượt là 3; 5; 6; 7; 9.

Lấy ngẫu nhiên đồng thời 2 tấm thẻ từ hộp.

a) Xác định không gian mẫu và số kết quả có thể xảy ra của phép thử.

b) Tính xác suất của mỗi biến cố sau:

A: “Tích các số ghi trên 2 tấm thẻ chia hết cho 3”;

B: “Tổng các số ghi trên 2 tấm thẻ lớn hơn 13”.

Video hướng dẫn giải

Phương pháp giải - Xem chi tiếtGiải bài tập 2 trang 60 SGK Toán 9 tập 2 - Chân trời sáng tạo 1

- Tính \(n(\Omega )\)

- Tính các kết quả thuận lợi của biến cố A và B.

- Sau đó tính xác suất A và B dựa vào: Xác suất của biến cố A, kí hiệu là P(A), được xác định bởi công thức: \(P(A) = \frac{{n(A)}}{{n(\Omega )}}\), trong đó n(A) là số các kết quả thuận lợi cho A; \(n(\Omega )\) là số các kết quả có thể xảy ra.

Lời giải chi tiết

a) \(\Omega \) = {(3; 5), (3; 6), (3; 7), (3;9), (5; 6), (5; 7), (5; 9), (6; 7), (6; 9), (7; 9)}. 

Suy ra \(n(\Omega )\) = 10 cách.

b) Do 5 tấm thẻ là cùng loại nên các thẻ có cùng khả năng xảy ra.

Có 9 kết quả thuận lợi cho biến cố A là:

(3; 5), (3; 6), (3; 7), (3;9), (5; 6), (5; 9), (6; 7), (6; 9), (7; 9). 

Xác suất biến cố A: P(A) = \(\frac{9}{{10}}\) = 0,9.

Có 3 kết quả thuận lợi cho biến cố B là: (5; 9), (6; 9), (7; 9). 

Xác suất biến cố B: P(B) = \(\frac{3}{{10}}\) = 0,3.

Làm chủ Toán 9, tự tin vào phòng thi! Đừng bỏ lỡ Giải bài tập 2 trang 60 SGK Toán 9 tập 2 - Chân trời sáng tạo đặc sắc thuộc chuyên mục sách bài tập toán 9 trên nền tảng đề thi toán. Với bộ bài tập toán thcs được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình sách giáo khoa mới nhất, đây chính là công cụ đắc lực giúp các em tối ưu hóa ôn luyện, củng cố kiến thức vững chắc và thuần thục mọi dạng bài thi khó nhằn. Phương pháp học trực quan, khoa học sẽ mang lại hiệu quả vượt trội, giúp con bạn chinh phục mọi thử thách một cách dễ dàng.

Giải bài tập 2 trang 60 SGK Toán 9 tập 2 - Chân trời sáng tạo: Hướng dẫn chi tiết

Bài tập 2 trang 60 SGK Toán 9 tập 2 - Chân trời sáng tạo thuộc chương trình học Toán 9, tập trung vào việc vận dụng các kiến thức về hàm số bậc nhất và hàm số bậc hai để giải quyết các bài toán thực tế. Để giải quyết bài tập này một cách hiệu quả, học sinh cần nắm vững các khái niệm cơ bản như:

  • Hàm số bậc nhất: Định nghĩa, dạng tổng quát, cách xác định hệ số góc và tung độ gốc.
  • Hàm số bậc hai: Định nghĩa, dạng tổng quát, cách xác định hệ số a, b, c và đỉnh của parabol.
  • Các tính chất của hàm số: Tính đơn điệu, giới hạn, cực trị.
  • Ứng dụng của hàm số trong việc giải quyết các bài toán thực tế.

Phân tích đề bài và tìm hướng giải

Trước khi bắt tay vào giải bài tập, học sinh cần đọc kỹ đề bài, xác định rõ yêu cầu của bài toán và tìm ra hướng giải phù hợp. Trong bài tập 2 trang 60, đề bài yêu cầu chúng ta…

Lời giải chi tiết bài tập 2 trang 60

Để giải bài tập này, chúng ta thực hiện các bước sau:

  1. Bước 1: Xác định hàm số cần xét.
  2. Bước 2: Phân tích các yếu tố của hàm số (hệ số, đỉnh, trục đối xứng).
  3. Bước 3: Vận dụng các kiến thức về hàm số để giải quyết bài toán.
  4. Bước 4: Kiểm tra lại kết quả và đưa ra kết luận.

(Giải thích chi tiết từng bước giải, kèm theo các ví dụ minh họa cụ thể. Ví dụ: Nếu bài toán yêu cầu tìm tọa độ đỉnh của parabol, cần giải thích cách sử dụng công thức để tính tọa độ đỉnh.)

Ví dụ minh họa

Để giúp học sinh hiểu rõ hơn về cách giải bài tập, chúng ta cùng xét một ví dụ minh họa sau:

(Đưa ra một ví dụ tương tự bài tập 2 trang 60, giải chi tiết và giải thích rõ ràng từng bước.)

Luyện tập thêm

Để củng cố kiến thức và rèn luyện kỹ năng giải bài tập, học sinh có thể tự giải các bài tập tương tự sau:

  • Bài tập 1: …
  • Bài tập 2: …
  • Bài tập 3: …

Tổng kết

Bài tập 2 trang 60 SGK Toán 9 tập 2 - Chân trời sáng tạo là một bài tập quan trọng giúp học sinh hiểu sâu hơn về hàm số bậc nhất và hàm số bậc hai. Bằng cách nắm vững các kiến thức cơ bản, phân tích đề bài một cách cẩn thận và vận dụng các phương pháp giải phù hợp, học sinh có thể tự tin giải quyết bài tập này một cách hiệu quả.

Bảng tổng hợp các công thức liên quan

Công thứcMô tả
y = ax + bHàm số bậc nhất
y = ax2 + bx + cHàm số bậc hai
x = -b / 2aHoành độ đỉnh của parabol

Hy vọng với hướng dẫn chi tiết này, các em học sinh sẽ tự tin hơn trong việc học Toán 9 và đạt kết quả tốt nhất!

Tài liệu, đề thi và đáp án Toán 9