Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài tập 11 trang 58 SGK Toán 9 tập 1 - Chân trời sáng tạo. Bài giải được trình bày rõ ràng, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.
Chúng tôi luôn cập nhật nhanh chóng và chính xác các bài giải Toán 9, đáp ứng nhu cầu học tập của học sinh trên toàn quốc.
Tìm x, biết: a) x2 = 10 b) (sqrt x = 8) c) x3 = - 0,027 d) (sqrt[3]{x} = - frac{2}{3})
Đề bài
Tìm x, biết:
a) x2 = 10
b) \(\sqrt x = 8\)
c) x3 = - 0,027
d) \(\sqrt[3]{x} = - \frac{2}{3}\)
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
- Với a không âm. Số x thoả mãn x2 = a. Mỗi số dương a có đúng hai căn bậc hai là: \(\sqrt a \) và - \(\sqrt a \).
- Với số thực a không âm, ta có: \({\left( {\sqrt a } \right)^2} = a\).
- Sử dụng phép khai căn bậc ba.
Lời giải chi tiết
a) x2 = 10
\(\sqrt {{x^2}} = \sqrt {10} \)
\(x = \sqrt {10} \) hoặc \({x = - \sqrt {10} }\)
b) \(\sqrt x = 8\)
\(\begin{array}{l}{\left( {\sqrt x } \right)^2} = {8^2}\\x = 64\end{array}\)
c) x3 = - 0,027
\(\begin{array}{l}\sqrt[3]{{{x^3}}} = \sqrt[3]{{ - 0,027}}\\x = \sqrt[3]{{{{\left( { - 0,3} \right)}^3}}}\\x = 0,3\end{array}\)
d) \(\sqrt[3]{x} = - \frac{2}{3}\)
\(\begin{array}{l}{\left( {\sqrt[3]{x}} \right)^3} = {\left( { - \frac{2}{3}} \right)^3}\\x = - \frac{8}{{27}}\end{array}\)
Bài tập 11 trang 58 SGK Toán 9 tập 1 - Chân trời sáng tạo thuộc chương trình học Toán 9, tập trung vào việc vận dụng các kiến thức về hàm số bậc nhất và ứng dụng của nó trong thực tế. Để giải quyết bài tập này một cách hiệu quả, học sinh cần nắm vững các khái niệm cơ bản như:
Trước khi bắt tay vào giải bài tập, điều quan trọng là phải đọc kỹ đề bài và xác định rõ yêu cầu của bài toán. Trong bài tập 11 trang 58, yêu cầu thường là:
Dưới đây là lời giải chi tiết cho bài tập 11 trang 58 SGK Toán 9 tập 1 - Chân trời sáng tạo. Lưu ý rằng, tùy thuộc vào từng dạng bài cụ thể, phương pháp giải có thể khác nhau. Tuy nhiên, các bước cơ bản thường bao gồm:
Ví dụ minh họa:
Giả sử đề bài yêu cầu tìm hàm số bậc nhất có dạng y = ax + b, biết rằng đồ thị của hàm số đi qua hai điểm A(1; 2) và B(-1; 0). Ta có thể giải bài toán này như sau:
Ngoài bài tập 11 trang 58, còn rất nhiều dạng bài tập khác liên quan đến hàm số bậc nhất. Dưới đây là một số dạng bài tập thường gặp và phương pháp giải:
Để nắm vững kiến thức về hàm số bậc nhất và rèn luyện kỹ năng giải toán, học sinh nên thực hành giải nhiều bài tập khác nhau. Ngoài ra, có thể tham khảo các tài liệu học tập, sách giáo khoa, bài giảng trực tuyến và các trang web học toán uy tín như giaitoan.edu.vn.
Bài tập 11 trang 58 SGK Toán 9 tập 1 - Chân trời sáng tạo là một bài tập quan trọng giúp học sinh hiểu rõ hơn về hàm số bậc nhất và ứng dụng của nó. Bằng cách nắm vững các khái niệm cơ bản, phân tích đề bài một cách cẩn thận và áp dụng các phương pháp giải phù hợp, học sinh có thể giải quyết bài tập này một cách hiệu quả.