Logo Header
  1. Môn Toán
  2. Giải bài tập 5 trang 51 SGK Toán 9 tập 1 - Chân trời sáng tạo

Giải bài tập 5 trang 51 SGK Toán 9 tập 1 - Chân trời sáng tạo

Giải bài tập 5 trang 51 SGK Toán 9 tập 1 - Chân trời sáng tạo

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 9. Bài viết này sẽ hướng dẫn bạn giải bài tập 5 trang 51 SGK Toán 9 tập 1 - Chân trời sáng tạo một cách nhanh chóng và hiệu quả.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, đặc biệt là với những bài tập đòi hỏi tư duy và vận dụng kiến thức. Vì vậy, chúng tôi luôn cố gắng trình bày lời giải một cách rõ ràng, logic và dễ tiếp thu nhất.

Tính a) (sqrt {frac{{0,49}}{{81}}} ) b) (sqrt {2frac{7}{9}} ) c) (sqrt {frac{1}{{16}}.frac{9}{{36}}} ) d) (left( { - sqrt {52} } right):sqrt {13} )

Đề bài

Tính

a) \(\sqrt {\frac{{0,49}}{{81}}} \)

b) \(\sqrt {2\frac{7}{9}} \)

c) \(\sqrt {\frac{1}{{16}}.\frac{9}{{36}}} \)

d) \(\left( { - \sqrt {52} } \right):\sqrt {13} \)

Video hướng dẫn giải

Phương pháp giải - Xem chi tiếtGiải bài tập 5 trang 51 SGK Toán 9 tập 1 - Chân trời sáng tạo 1

Dựa vào tính chất: Với số thực a không âm và số thực b dương, ta có:

\(\sqrt {\frac{a}{b}} = \frac{{\sqrt a }}{{\sqrt b }}\)

Lời giải chi tiết

a) \(\sqrt {\frac{{0,49}}{{81}}} = \frac{{\sqrt {0,49} }}{{\sqrt {81} }} = \frac{{0,7}}{9} = \frac{7}{{90}}\)

b) \(\sqrt {2\frac{7}{9}} = \sqrt {\frac{{25}}{9}} = \frac{{\sqrt {25} }}{{\sqrt 9 }} = \frac{5}{3}\)

c) \(\sqrt {\frac{1}{{16}}.\frac{9}{{36}}} = \sqrt {\frac{1}{{16}}} .\sqrt {\frac{9}{{36}}} = \frac{1}{4}.\frac{{\sqrt 9 }}{{\sqrt {36} }} = \frac{1}{4}.\frac{3}{6} = \frac{3}{{24}} = \frac{1}{8}\)

d) \(\left( { - \sqrt {52} } \right):\sqrt {13} = - \frac{{\sqrt {52} }}{{\sqrt {13} }} = - \sqrt {\frac{{52}}{{13}}} = - \sqrt 4 = - 2\)

Làm chủ Toán 9, tự tin vào phòng thi! Đừng bỏ lỡ Giải bài tập 5 trang 51 SGK Toán 9 tập 1 - Chân trời sáng tạo đặc sắc thuộc chuyên mục sách bài tập toán 9 trên nền tảng học toán. Với bộ bài tập lý thuyết toán thcs được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình sách giáo khoa mới nhất, đây chính là công cụ đắc lực giúp các em tối ưu hóa ôn luyện, củng cố kiến thức vững chắc và thuần thục mọi dạng bài thi khó nhằn. Phương pháp học trực quan, khoa học sẽ mang lại hiệu quả vượt trội, giúp con bạn chinh phục mọi thử thách một cách dễ dàng.

Giải bài tập 5 trang 51 SGK Toán 9 tập 1 - Chân trời sáng tạo: Hướng dẫn chi tiết

Bài tập 5 trang 51 SGK Toán 9 tập 1 - Chân trời sáng tạo thuộc chương trình đại số, tập trung vào việc giải phương trình bậc hai một ẩn. Để giải quyết bài tập này, học sinh cần nắm vững các kiến thức cơ bản về phương trình bậc hai, bao gồm:

  • Dạng tổng quát của phương trình bậc hai: ax2 + bx + c = 0 (a ≠ 0)
  • Công thức nghiệm tổng quát: x = (-b ± √(b2 - 4ac)) / 2a
  • Định lý về dấu của nghiệm: Δ = b2 - 4ac
    • Δ > 0: Phương trình có hai nghiệm phân biệt
    • Δ = 0: Phương trình có nghiệm kép
    • Δ < 0: Phương trình vô nghiệm
  • Các phương pháp giải phương trình bậc hai: Phân tích thành nhân tử, sử dụng công thức nghiệm, hoàn thành bình phương

Nội dung bài tập 5 trang 51 SGK Toán 9 tập 1 - Chân trời sáng tạo

Bài tập 5 thường bao gồm các phương trình bậc hai với các hệ số khác nhau. Yêu cầu của bài tập là tìm nghiệm của phương trình hoặc xác định số nghiệm của phương trình.

Hướng dẫn giải chi tiết bài tập 5 trang 51 SGK Toán 9 tập 1 - Chân trời sáng tạo

Để giải bài tập này, chúng ta sẽ áp dụng các kiến thức và phương pháp đã nêu ở trên. Dưới đây là một ví dụ minh họa:

Ví dụ: Giải phương trình 2x2 - 5x + 2 = 0

  1. Xác định các hệ số: a = 2, b = -5, c = 2
  2. Tính delta: Δ = b2 - 4ac = (-5)2 - 4 * 2 * 2 = 25 - 16 = 9
  3. Vì Δ > 0, phương trình có hai nghiệm phân biệt:
  4. Tính các nghiệm:
    • x1 = (-b + √Δ) / 2a = (5 + √9) / (2 * 2) = (5 + 3) / 4 = 2
    • x2 = (-b - √Δ) / 2a = (5 - √9) / (2 * 2) = (5 - 3) / 4 = 0.5
  5. Kết luận: Phương trình 2x2 - 5x + 2 = 0 có hai nghiệm là x1 = 2 và x2 = 0.5

Lưu ý khi giải bài tập

  • Luôn kiểm tra lại kết quả sau khi giải để đảm bảo tính chính xác.
  • Sử dụng máy tính bỏ túi để tính toán nhanh chóng và chính xác.
  • Nếu gặp khó khăn, hãy tham khảo các tài liệu học tập hoặc tìm kiếm sự giúp đỡ từ giáo viên và bạn bè.

Bài tập luyện tập

Để củng cố kiến thức và kỹ năng giải phương trình bậc hai, bạn có thể luyện tập thêm với các bài tập sau:

  • Giải phương trình x2 - 4x + 3 = 0
  • Giải phương trình 3x2 + 7x + 2 = 0
  • Giải phương trình x2 - 6x + 9 = 0

Kết luận

Hy vọng rằng hướng dẫn chi tiết này đã giúp bạn hiểu rõ hơn về cách giải bài tập 5 trang 51 SGK Toán 9 tập 1 - Chân trời sáng tạo. Chúc bạn học tập tốt và đạt kết quả cao trong môn Toán!

Phương trìnhNghiệm
2x2 - 5x + 2 = 0x1 = 2, x2 = 0.5

Tài liệu, đề thi và đáp án Toán 9