Chào mừng các em học sinh đến với chuyên mục giải bài tập Toán 9 tập 1 của giaitoan.edu.vn. Chúng tôi xin giới thiệu lời giải chi tiết và dễ hiểu cho mục 1 trang 46, 47 sách giáo khoa Toán 9 tập 1 - Chân trời sáng tạo.
Mục tiêu của chúng tôi là giúp các em nắm vững kiến thức, rèn luyện kỹ năng giải toán và đạt kết quả tốt nhất trong học tập.
Hoàn thành bảng sau vào vở. Từ đó, nhận xét gì về căn bậc hai số học của bình phương của một số?
Video hướng dẫn giải
Trả lời câu hỏi Thực hành 2 trang 47 SGK Toán 9 Chân trời sáng tạo
Rút gọn các biểu thức sau:
a) \(\sqrt {{{\left( {2 - \sqrt 5 } \right)}^2}} \)
b) \(\sqrt {{a^2}} + \sqrt {{{( - 3a)}^2}} \) với a > 0.
Phương pháp giải:
Dựa vào tính chất: Với biểu thức A bất kì, ta có \(\sqrt {{A^2}} = \left| A \right|\), nghĩa là:
\(\sqrt {{A^2}} = A\) khi \(A \ge 0\)
\(\sqrt {{A^2}} = - A\) khi \(A < 0\)
Lời giải chi tiết:
a) \(\sqrt {{{\left( {2 - \sqrt 5 } \right)}^2}} = \left| {2 - \sqrt 5 } \right| = \sqrt 5 - 2\)
(Vì \(2 - \sqrt 5 \) < 0)
b) \(\sqrt {{a^2}} + \sqrt {{{( - 3a)}^2}} \) với a > 0.
\(\sqrt {{a^2}} + \sqrt {{{( - 3a)}^2}} = \left| a \right| + \left| { - 3a} \right| = a + 3a = 4a\).
Video hướng dẫn giải
Trả lời câu hỏi Thực hành 1 trang 47 SGK Toán 9 Chân trời sáng tạo
Tính
a) \(\sqrt {{{\left( { - 0,4} \right)}^2}} \)
b) \( - \sqrt {{{\left( { - \frac{4}{9}} \right)}^2}} \)
c) \( - 2\sqrt {{3^2}} + {\left( { - \sqrt 6 } \right)^2}\)
Phương pháp giải:
Dựa vào tính chất: Với mọi số thực a, ta có \(\sqrt {{a^2}} = \left| a \right|\).
Lời giải chi tiết:
a) \(\sqrt {{{\left( { - 0,4} \right)}^2}} = \left| { - 0,4} \right| = 0,4\)
b) \( - \sqrt {{{\left( { - \frac{4}{9}} \right)}^2}} = - \left| { - \frac{4}{9}} \right| = - \frac{4}{9}\)
c) \( - 2\sqrt {{3^2}} + {\left( { - \sqrt 6 } \right)^2} = - 2.\left| 3 \right| + 6 = - 2.3 + 6 = 0\)
Video hướng dẫn giải
Trả lời câu hỏi Hoạt động 1 trang 46 SGK Toán 9 Chân trời sáng tạo
Hoàn thành bảng sau vào vở.
Từ đó, nhận xét gì về căn bậc hai số học của bình phương của một số?
Phương pháp giải:
Đưa số vào trong căn rồi bình phương.
Lời giải chi tiết:
Căn bậc hai số học của bình phương của một số là 1 số không âm.
Video hướng dẫn giải
Trả lời câu hỏi Hoạt động 1 trang 46 SGK Toán 9 Chân trời sáng tạo
Hoàn thành bảng sau vào vở.
Từ đó, nhận xét gì về căn bậc hai số học của bình phương của một số?
Phương pháp giải:
Đưa số vào trong căn rồi bình phương.
Lời giải chi tiết:
Căn bậc hai số học của bình phương của một số là 1 số không âm.
Video hướng dẫn giải
Trả lời câu hỏi Thực hành 1 trang 47 SGK Toán 9 Chân trời sáng tạo
Tính
a) \(\sqrt {{{\left( { - 0,4} \right)}^2}} \)
b) \( - \sqrt {{{\left( { - \frac{4}{9}} \right)}^2}} \)
c) \( - 2\sqrt {{3^2}} + {\left( { - \sqrt 6 } \right)^2}\)
Phương pháp giải:
Dựa vào tính chất: Với mọi số thực a, ta có \(\sqrt {{a^2}} = \left| a \right|\).
Lời giải chi tiết:
a) \(\sqrt {{{\left( { - 0,4} \right)}^2}} = \left| { - 0,4} \right| = 0,4\)
b) \( - \sqrt {{{\left( { - \frac{4}{9}} \right)}^2}} = - \left| { - \frac{4}{9}} \right| = - \frac{4}{9}\)
c) \( - 2\sqrt {{3^2}} + {\left( { - \sqrt 6 } \right)^2} = - 2.\left| 3 \right| + 6 = - 2.3 + 6 = 0\)
Video hướng dẫn giải
Trả lời câu hỏi Thực hành 2 trang 47 SGK Toán 9 Chân trời sáng tạo
Rút gọn các biểu thức sau:
a) \(\sqrt {{{\left( {2 - \sqrt 5 } \right)}^2}} \)
b) \(\sqrt {{a^2}} + \sqrt {{{( - 3a)}^2}} \) với a > 0.
Phương pháp giải:
Dựa vào tính chất: Với biểu thức A bất kì, ta có \(\sqrt {{A^2}} = \left| A \right|\), nghĩa là:
\(\sqrt {{A^2}} = A\) khi \(A \ge 0\)
\(\sqrt {{A^2}} = - A\) khi \(A < 0\)
Lời giải chi tiết:
a) \(\sqrt {{{\left( {2 - \sqrt 5 } \right)}^2}} = \left| {2 - \sqrt 5 } \right| = \sqrt 5 - 2\)
(Vì \(2 - \sqrt 5 \) < 0)
b) \(\sqrt {{a^2}} + \sqrt {{{( - 3a)}^2}} \) với a > 0.
\(\sqrt {{a^2}} + \sqrt {{{( - 3a)}^2}} = \left| a \right| + \left| { - 3a} \right| = a + 3a = 4a\).
Mục 1 trang 46, 47 SGK Toán 9 tập 1 - Chân trời sáng tạo tập trung vào việc ôn tập và hệ thống hóa kiến thức về hàm số bậc nhất. Đây là một phần quan trọng trong chương trình Toán 9, là nền tảng cho các kiến thức nâng cao hơn. Việc nắm vững các khái niệm, tính chất và phương pháp giải bài tập liên quan đến hàm số bậc nhất là điều cần thiết để các em có thể tự tin giải quyết các bài toán phức tạp hơn.
Bài 1 yêu cầu các em xác định hàm số bậc nhất và tìm các hệ số a, b. Để giải bài này, các em cần nắm vững định nghĩa hàm số bậc nhất y = ax + b, trong đó a và b là các hệ số. Các em cần xác định đúng các giá trị của x và y để tìm ra a và b.
Bài 2 yêu cầu các em vẽ đồ thị hàm số. Để vẽ đồ thị, các em cần xác định ít nhất hai điểm thuộc đồ thị. Các điểm này có thể được tìm bằng cách cho x một vài giá trị cụ thể và tính giá trị tương ứng của y. Sau đó, các em nối hai điểm này lại với nhau để được đồ thị hàm số.
Bài 3 là một bài toán ứng dụng, yêu cầu các em sử dụng kiến thức về hàm số bậc nhất để giải quyết một vấn đề thực tế. Các em cần đọc kỹ đề bài, xác định các yếu tố liên quan đến hàm số và xây dựng phương trình để giải quyết bài toán.
Ngoài sách giáo khoa, các em có thể tham khảo thêm các tài liệu sau để học tốt môn Toán 9:
Hy vọng với những hướng dẫn chi tiết và hữu ích trên đây, các em sẽ tự tin giải quyết các bài tập trong mục 1 trang 46, 47 SGK Toán 9 tập 1 - Chân trời sáng tạo. Chúc các em học tập tốt và đạt kết quả cao!