Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 9 tập 2. Bài viết này sẽ hướng dẫn bạn giải bài tập 1 trang 21 SGK Toán 9 tập 2 theo chương trình Chân trời sáng tạo.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, chúng tôi đã biên soạn lời giải một cách cẩn thận, kèm theo các bước giải thích rõ ràng, giúp bạn nắm vững kiến thức và kỹ năng giải toán.
Không giải phương trình, hãy tính tổng và tích các nghiệm (nếu có) của mỗi phương trình: a) (3{x^2} - 9x + 5 = 0) b) (25{x^2} - 20x + 4 = 0) c) (5{x^2} - 9x + 15 = 0) d) (5{x^2} - 2sqrt 3 x - 3 = 0)
Đề bài
Không giải phương trình, hãy tính tổng và tích các nghiệm (nếu có) của mỗi phương trình:
a) \(3{x^2} - 9x + 5 = 0\)
b) \(25{x^2} - 20x + 4 = 0\)
c) \(5{x^2} - 9x + 15 = 0\)
d) \(5{x^2} - 2\sqrt 3 x - 3 = 0\)
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Dựa vào: Nếu phương trình bậc hai \(a{x^2} + bx + c = 0(a \ne 0)\) có hai nghiệm \({x_1},{x_2}\) thì tổng và tích của hai nghiệm đó là:
S = \({x_1} + {x_2} = - \frac{b}{a}\); P = \({x_1}.{x_2} = \frac{c}{a}\)
Lời giải chi tiết
a) Ta có \(\Delta = {\left( { - 9} \right)^2} - 4.3.5 = 21 > 0\) nên phương trình có có 2 nghiệm phân biệt \({x_1},{x_2}\).
Theo định lí Viète, ta có: \({x_1} + {x_2} = \frac{9}{3} = 3\), \({x_1}.{x_2} = \frac{5}{3}\)
b) Ta có \(\Delta = {\left( { - 20} \right)^2} - 4.25.4 = 0\) nên phương trình có nghiệm kép \({x_1},{x_2}\).
Theo định lí Viète, ta có: \({x_1} + {x_2} = \frac{{ -(- 20)}}{{25}} = \frac{{ 4}}{5}\), \({x_1}.{x_2} = \frac{4}{{25}}\).
c) Ta có \(\Delta = {\left( { - 9} \right)^2} - 4.5.15 = - 219 < 0\) nên phương trình vô nghiệm.
d) Ta có \(\Delta = {\left( { - 2\sqrt 3 } \right)^2} - 4.5.( - 3) = 72 > 0\) nên phương trình có có 2 nghiệm phân biệt \({x_1},{x_2}\).
Theo định lí Viète, ta có: \({x_1} + {x_2} = \frac{{2\sqrt 3 }}{5}\), \({x_1}.{x_2} = \frac{{ - 3}}{5}\).
Bài tập 1 trang 21 SGK Toán 9 tập 2 thuộc chương trình Chân trời sáng tạo tập trung vào việc ôn tập và củng cố kiến thức về hàm số bậc nhất. Cụ thể, bài tập yêu cầu học sinh xác định hệ số góc và tung độ gốc của hàm số, vẽ đồ thị hàm số và ứng dụng hàm số vào giải quyết các bài toán thực tế.
Bài tập 1 bao gồm các câu hỏi nhỏ, yêu cầu học sinh thực hiện các thao tác sau:
Hệ số góc: a = 2
Tung độ gốc: b = 3
Để vẽ đồ thị, ta xác định hai điểm thuộc đường thẳng. Ví dụ:
Nối hai điểm A và B, ta được đồ thị của hàm số y = 2x + 3.
Hệ số góc: a = -1
Tung độ gốc: b = 1
Để vẽ đồ thị, ta xác định hai điểm thuộc đường thẳng. Ví dụ:
Nối hai điểm C và D, ta được đồ thị của hàm số y = -x + 1.
Hàm số bậc nhất có nhiều ứng dụng trong thực tế, ví dụ như:
Khi giải bài tập về hàm số bậc nhất, bạn cần lưu ý những điều sau:
Để củng cố kiến thức, bạn có thể làm thêm các bài tập tương tự trong SGK và sách bài tập Toán 9 tập 2.
Bài tập 1 trang 21 SGK Toán 9 tập 2 là một bài tập quan trọng giúp học sinh ôn tập và củng cố kiến thức về hàm số bậc nhất. Hy vọng với hướng dẫn chi tiết này, bạn sẽ giải bài tập một cách dễ dàng và hiệu quả. Chúc bạn học tốt!