Logo Header
  1. Môn Toán
  2. Giải bài tập 15 trang 23 SGK Toán 9 tập 2 - Chân trời sáng tạo

Giải bài tập 15 trang 23 SGK Toán 9 tập 2 - Chân trời sáng tạo

Giải bài tập 15 trang 23 SGK Toán 9 tập 2 - Chân trời sáng tạo

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 9 tập 2. Bài viết này sẽ hướng dẫn bạn giải bài tập 15 trang 23 SGK Toán 9 tập 2 - Chân trời sáng tạo một cách nhanh chóng và hiệu quả.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, chúng tôi luôn cố gắng trình bày lời giải một cách rõ ràng, logic và dễ tiếp thu nhất.

Một người đi xe đạp từ A đến B cách nhau 24 km. Khi đi từ B trở về A, nhờ xuôi gió nên tốc độ lúc về nhanh hơn tốc độ lúc đi là 4 km/h, vì thế thời gian về ít hơn thời gian đi 30 phút. Tính tốc độ của xe đạp khi đi từ A đến B.

Đề bài

Một người đi xe đạp từ A đến B cách nhau 24 km. Khi đi từ B trở về A, nhờ xuôi gió nên tốc độ lúc về nhanh hơn tốc độ lúc đi là 4 km/h, vì thế thời gian về ít hơn thời gian đi 30 phút. Tính tốc độ của xe đạp khi đi từ A đến B.

Video hướng dẫn giải

Phương pháp giải - Xem chi tiếtGiải bài tập 15 trang 23 SGK Toán 9 tập 2 - Chân trời sáng tạo 1

Dựa vào để giải bài toán bằng cách lập phương trình bậc hai như sau:

B1: Lập phương trình

+ Chọn ẩn và đặt điều kiện thích hợp cho ẩn.

+ Biểu diễn các đại lượng chưa biết theo ẩn và các đại lượng đã biết.

+ Lập phương trình biểu thị mối quan hệ giữa các đại lượng.

B2: Giải phương trình nói trên.

B3: Kiểm tra các nghiệm tìm được ở B2 có thỏa mãn điều kiện của ẩn hay không rồi trả lời bài toán.

Lời giải chi tiết

Gọi tốc độ của xe đạp đi từ A đến B là x (km/h) (x > 0)

Suy ra tốc độ của xe đạp đi từ A đến B là x + 4 (km/h)

Thời gian xe đạp đi từ A đến B là: \(\frac{{24}}{x}\)(giờ).

Thời gian xe đạp đi từ B đến A là: \(\frac{{24}}{{x + 4}}\) (giờ).

Vì thời gian đi từ B đến A nhanh hơn đi từ A đến B là 30 phút = \(\frac{1}{2}\) giờ nên ta có phương trình:

\(\frac{{24}}{x} - \frac{{24}}{{x + 4}}\) = \(\frac{1}{2}\).

Biến đổi phương trình trên, ta được:

\(24.2.(x + 4) - 24.2.x = x.(x + 4)\) hay \({x^2} + 4x - 192 = 0\)

Giải phương trình trên, ta được \({x_1} = 12(TM),{x_2} = - 16(L)\)

Vậy tốc độ của xe đạp đi từ A đến B là 12 km/h.

Làm chủ Toán 9, tự tin vào phòng thi! Đừng bỏ lỡ Giải bài tập 15 trang 23 SGK Toán 9 tập 2 - Chân trời sáng tạo đặc sắc thuộc chuyên mục bài tập toán 9 trên nền tảng học toán. Với bộ bài tập toán trung học cơ sở được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình sách giáo khoa mới nhất, đây chính là công cụ đắc lực giúp các em tối ưu hóa ôn luyện, củng cố kiến thức vững chắc và thuần thục mọi dạng bài thi khó nhằn. Phương pháp học trực quan, khoa học sẽ mang lại hiệu quả vượt trội, giúp con bạn chinh phục mọi thử thách một cách dễ dàng.

Giải bài tập 15 trang 23 SGK Toán 9 tập 2 - Chân trời sáng tạo: Tổng quan

Bài tập 15 trang 23 SGK Toán 9 tập 2 - Chân trời sáng tạo thuộc chương trình học Toán 9, tập trung vào việc vận dụng các kiến thức về hàm số bậc nhất và hàm số bậc hai để giải quyết các bài toán thực tế. Bài tập này yêu cầu học sinh phải nắm vững các khái niệm như hệ số góc, giao điểm của đồ thị hàm số, và các phương pháp giải phương trình bậc hai.

Nội dung bài tập 15 trang 23

Bài tập 15 thường bao gồm các dạng bài sau:

  • Xác định hàm số: Cho một số thông tin về đồ thị hoặc các điểm thuộc đồ thị hàm số, yêu cầu xác định hàm số.
  • Tìm giao điểm: Tìm tọa độ giao điểm của hai đường thẳng hoặc một đường thẳng và một parabol.
  • Giải phương trình: Giải các phương trình bậc hai bằng các phương pháp đã học (phân tích thành nhân tử, sử dụng công thức nghiệm, phương pháp hoàn thiện bình phương).
  • Ứng dụng thực tế: Giải các bài toán liên quan đến các tình huống thực tế, ví dụ như tính quãng đường, thời gian, hoặc chi phí.

Hướng dẫn giải chi tiết bài tập 15 trang 23

Để giải bài tập 15 trang 23 SGK Toán 9 tập 2 - Chân trời sáng tạo một cách hiệu quả, bạn cần thực hiện theo các bước sau:

  1. Đọc kỹ đề bài: Xác định rõ yêu cầu của bài toán và các thông tin đã cho.
  2. Phân tích bài toán: Xác định các kiến thức và kỹ năng cần sử dụng để giải bài toán.
  3. Lập kế hoạch giải: Xác định các bước cần thực hiện để giải bài toán.
  4. Thực hiện giải: Thực hiện các bước đã lập kế hoạch và kiểm tra lại kết quả.
  5. Kiểm tra lại kết quả: Đảm bảo rằng kết quả của bạn là chính xác và phù hợp với yêu cầu của bài toán.

Ví dụ minh họa

Bài toán: Tìm giao điểm của hai đường thẳng y = 2x + 1 và y = -x + 4.

Giải:

Để tìm giao điểm của hai đường thẳng, ta giải hệ phương trình:

y = 2x + 1y = -x + 4
Phương trình 1y = 2x + 1
Phương trình 2y = -x + 4

Thay y = 2x + 1 vào phương trình thứ hai, ta được:

2x + 1 = -x + 4

3x = 3

x = 1

Thay x = 1 vào phương trình y = 2x + 1, ta được:

y = 2(1) + 1 = 3

Vậy giao điểm của hai đường thẳng là (1; 3).

Lưu ý khi giải bài tập

  • Luôn kiểm tra lại kết quả của mình để đảm bảo tính chính xác.
  • Sử dụng các công cụ hỗ trợ như máy tính bỏ túi hoặc phần mềm vẽ đồ thị để kiểm tra lại kết quả.
  • Tham khảo các tài liệu tham khảo khác để hiểu rõ hơn về các khái niệm và kỹ năng cần sử dụng.
  • Thực hành giải nhiều bài tập khác nhau để rèn luyện kỹ năng và nâng cao khả năng giải quyết vấn đề.

Kết luận

Bài tập 15 trang 23 SGK Toán 9 tập 2 - Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về hàm số và ứng dụng vào giải quyết các bài toán thực tế. Hy vọng rằng với hướng dẫn chi tiết và ví dụ minh họa trên, bạn sẽ có thể giải bài tập này một cách dễ dàng và hiệu quả. Chúc bạn học tốt!

Tài liệu, đề thi và đáp án Toán 9