Chào mừng các em học sinh đến với chuyên mục giải bài tập Toán 9 tập 1 của giaitoan.edu.vn. Chúng tôi xin giới thiệu lời giải chi tiết và dễ hiểu cho mục 2 trang 47, 48, 49 sách giáo khoa Toán 9 tập 1 - Chân trời sáng tạo.
Với đội ngũ giáo viên giàu kinh nghiệm, chúng tôi cam kết cung cấp những lời giải chính xác, khoa học, giúp các em nắm vững kiến thức và tự tin giải quyết các bài tập tương tự.
Thực hiện các phép tính cho trên bảng trong Hình 1. b) Từ đó, có nhận xét gì về căn bậc hai của tích hai số không âm?
Video hướng dẫn giải
Trả lời câu hỏi Hoạt động 3 trang 48 SGK Toán 9 Chân trời sáng tạo
Thay mỗi ? bằng các số thích hợp:
a) \(\sqrt {50} = \sqrt ? .\sqrt 2 = ?.\sqrt 2 \)
b) \(\sqrt {3.{{( - 4)}^2}} = \sqrt ? .\sqrt 3 = ?.\sqrt 3 \)
c) \(3\sqrt 2 = \sqrt ? .\sqrt 2 = \sqrt ? \)
d) \( - 2\sqrt 5 = - \sqrt ? .\sqrt 5 = - \sqrt ? \)
Phương pháp giải:
Dựa vào tính chất \(\sqrt {a.b} = \sqrt a .\sqrt b \) với a, b > 0
Lời giải chi tiết:
a) \(\sqrt {50} = \sqrt {25} .\sqrt 2 = 5.\sqrt 2 \)
b) \(\sqrt {3.{{( - 4)}^2}} = \sqrt {16} .\sqrt 3 = 4.\sqrt 3 \)
c) \(3\sqrt 2 = \sqrt 9 .\sqrt 2 = \sqrt {18} \)
d) \( - 2\sqrt 5 = - \sqrt 4 .\sqrt 5 = - \sqrt {20} \)
Video hướng dẫn giải
Trả lời câu hỏi Thực hành 3 trang 49 SGK Toán 9 Chân trời sáng tạo
Tính
a) \(\sqrt {0,16.64} \)
b) \(\sqrt {8,{{1.10}^3}} \)
c) \(\sqrt {12.250.1,2} \)
d) \(\sqrt {28} .\sqrt 7 \)
e) \(\sqrt {4,9} .\sqrt {30} .\sqrt {12} \)
Phương pháp giải:
Dựa vào tính chất \(\sqrt {a.b} = \sqrt a .\sqrt b \) với a, b > 0
Lời giải chi tiết:
a) \(\sqrt {0,16.64} \) \(= \sqrt {0,16} .\sqrt {64} \) \(= 0,4.8 \) \(= 3,2\)
b) \(\sqrt {8,{{1.10}^3}} \) \(= \sqrt {81} .\sqrt {{{10}^2}} \) \(= 9.10 \) \(= 90\)
c) \(\sqrt {12.250.1,2} \) \(= \sqrt {12.25.10.1,2} \) \(= \sqrt {12.25.12} \) \(= \sqrt {12.25.12} \) \(= \sqrt {{{25.12}^2}} \) \(= \sqrt {25} .\sqrt {{{12}^2}} \) \(= 5.12 \) \(= 60\)
d) \(\sqrt {28} .\sqrt 7 \) \(= \sqrt {28.7} \) \(= \sqrt {4.7.7} \) \(= \sqrt {4} .\sqrt {{{7}^2}}\) \(= 2.7 \) \(= 14\)
e) \(\sqrt {4,9} .\sqrt {30} .\sqrt {12} \) \(= \sqrt {4,9.30.12} \) \(= \sqrt {49.3.12} \) \(= \sqrt {49.36} \) \(= \sqrt {49} .\sqrt {36}\) \(= 7.6 \) \(= 42\)
Video hướng dẫn giải
Trả lời câu hỏi Thực hành 4 trang 49 SGK Toán 9 Chân trời sáng tạo
Rút gọn các biểu thức sau:
a) \(\sqrt {500} \)
b) \(\sqrt {5a} .\sqrt {20a} \) với a \( \ge \)0
c) \(\sqrt {18.{{\left( {2 - a} \right)}^2}} \) với a > 2
Phương pháp giải:
Dựa vào tính chất \(\sqrt {a.b} = \sqrt a .\sqrt b \) với a, b > 0
Lời giải chi tiết:
a) \(\sqrt {500} = \sqrt {5.100} = \sqrt 5 .\sqrt {100} = 10\sqrt 5 \)
b) \(\sqrt {5a} .\sqrt {20a} = \sqrt {5a.20a} = \sqrt {100{a^2}} = \sqrt {100} .\sqrt {{a^2}} = 10a\)
c) \(\sqrt {18.{{\left( {2 - a} \right)}^2}} = \sqrt {9.2.{{\left( {2 - a} \right)}^2}} \)\( = \sqrt 9 .\sqrt 2 .\sqrt {{{\left( {2 - a} \right)}^2}} \)\( = 3\sqrt 2 .\left| {2 - a} \right| = 3\sqrt 2 (a - 2)\)
Video hướng dẫn giải
Trả lời câu hỏi Thực hành 5 trang 49 SGK Toán 9 Chân trời sáng tạo
Đưa thừa số vào trong dấu căn bậc hai:
a) \(5.\sqrt 2 \)
b) \( - 10\sqrt 7 \)
c) \(2a\sqrt {\frac{3}{{10a}}} \) với a > 0
Phương pháp giải:
Dựa vào tính chất \(\sqrt {a.b} = \sqrt a .\sqrt b \) với a, b > 0
Lời giải chi tiết:
a) \(5.\sqrt 2 = \sqrt {{5^2}.2} = \sqrt {50} \)
b) \( - 10\sqrt 7 = - \sqrt {{{10}^2}.7} = - \sqrt {700} \)
c) \(\sqrt {{{\left( {2a} \right)}^2}.\frac{3}{{10a}}} = \sqrt {\frac{{12{a^2}}}{{10a}}} = \sqrt {\frac{{6a}}{5}} \).
Video hướng dẫn giải
Trả lời câu hỏi Vận dụng 1 trang 49 SGK Toán 9 Chân trời sáng tạo
Tính diện tích của hình chữ nhật và hình vuông trong hoạt động khởi động. Biết mỗi ô vuông nhỏ có độ dài cạnh là 1. Diện tích của hai hình đó bằng nhau không?
Phương pháp giải:
Dựa vào công thức tính diện tích hình chữ nhật và hình vuông.
Lời giải chi tiết:
Độ dài chiều dài hình chữ nhật là: \(\sqrt {{4^2} + {2^2}} = 2\sqrt 5 \)
Độ dài chiều rộng hình chữ nhật là: \(\sqrt {{2^2} + {1^2}} = \sqrt 5 \)
Diện tích hình chữ nhật là: \(2\sqrt 5 .\sqrt 5 = 2.5 = 10\)
Độ dài cạnh hình vuông là: \(\sqrt {{3^2} + {1^2}} = \sqrt {10} \)
Diện tích hình vuông là: \({\left( {\sqrt {10} } \right)^2} = 10\)
Vậy diện tích hai hình bằng nhau.
Video hướng dẫn giải
Trả lời câu hỏi Hoạt động 2 trang 47 SGK Toán 9 Chân trời sáng tạo
a) Thực hiện các phép tính cho trên bảng trong Hình 1.
b) Từ đó, có nhận xét gì về căn bậc hai của tích hai số không âm?
Phương pháp giải:
Dựa vào \({\left( {\sqrt a } \right)^2} = {\left( { - \sqrt a } \right)^2} = a\) và \(\sqrt {{a^2}} = a\). ( a > 0)
Lời giải chi tiết:
a)
(1) \(\sqrt {4.9} = \sqrt {36} = \sqrt {{{\left( 6 \right)}^2}} = 6\)
(2) \(\sqrt 4 .\sqrt 9 = \sqrt {{2^2}} .\sqrt {{3^2}} = 2.3 = 6\)
(3) \(\sqrt {16.25} = \sqrt {400} = \sqrt {{{\left( {20} \right)}^2}} = 20\)
(4) \(\sqrt {16} .\sqrt {25} = \sqrt {{4^2}} .\sqrt {{5^2}} = 4.5 = 20\)
b) Căn bậc hai của tích hai số không âm bằng tích các căn bậc hai của hai số không âm.
Video hướng dẫn giải
Trả lời câu hỏi Hoạt động 2 trang 47 SGK Toán 9 Chân trời sáng tạo
a) Thực hiện các phép tính cho trên bảng trong Hình 1.
b) Từ đó, có nhận xét gì về căn bậc hai của tích hai số không âm?
Phương pháp giải:
Dựa vào \({\left( {\sqrt a } \right)^2} = {\left( { - \sqrt a } \right)^2} = a\) và \(\sqrt {{a^2}} = a\). ( a > 0)
Lời giải chi tiết:
a)
(1) \(\sqrt {4.9} = \sqrt {36} = \sqrt {{{\left( 6 \right)}^2}} = 6\)
(2) \(\sqrt 4 .\sqrt 9 = \sqrt {{2^2}} .\sqrt {{3^2}} = 2.3 = 6\)
(3) \(\sqrt {16.25} = \sqrt {400} = \sqrt {{{\left( {20} \right)}^2}} = 20\)
(4) \(\sqrt {16} .\sqrt {25} = \sqrt {{4^2}} .\sqrt {{5^2}} = 4.5 = 20\)
b) Căn bậc hai của tích hai số không âm bằng tích các căn bậc hai của hai số không âm.
Video hướng dẫn giải
Trả lời câu hỏi Hoạt động 3 trang 48 SGK Toán 9 Chân trời sáng tạo
Thay mỗi ? bằng các số thích hợp:
a) \(\sqrt {50} = \sqrt ? .\sqrt 2 = ?.\sqrt 2 \)
b) \(\sqrt {3.{{( - 4)}^2}} = \sqrt ? .\sqrt 3 = ?.\sqrt 3 \)
c) \(3\sqrt 2 = \sqrt ? .\sqrt 2 = \sqrt ? \)
d) \( - 2\sqrt 5 = - \sqrt ? .\sqrt 5 = - \sqrt ? \)
Phương pháp giải:
Dựa vào tính chất \(\sqrt {a.b} = \sqrt a .\sqrt b \) với a, b > 0
Lời giải chi tiết:
a) \(\sqrt {50} = \sqrt {25} .\sqrt 2 = 5.\sqrt 2 \)
b) \(\sqrt {3.{{( - 4)}^2}} = \sqrt {16} .\sqrt 3 = 4.\sqrt 3 \)
c) \(3\sqrt 2 = \sqrt 9 .\sqrt 2 = \sqrt {18} \)
d) \( - 2\sqrt 5 = - \sqrt 4 .\sqrt 5 = - \sqrt {20} \)
Video hướng dẫn giải
Trả lời câu hỏi Thực hành 3 trang 49 SGK Toán 9 Chân trời sáng tạo
Tính
a) \(\sqrt {0,16.64} \)
b) \(\sqrt {8,{{1.10}^3}} \)
c) \(\sqrt {12.250.1,2} \)
d) \(\sqrt {28} .\sqrt 7 \)
e) \(\sqrt {4,9} .\sqrt {30} .\sqrt {12} \)
Phương pháp giải:
Dựa vào tính chất \(\sqrt {a.b} = \sqrt a .\sqrt b \) với a, b > 0
Lời giải chi tiết:
a) \(\sqrt {0,16.64} \) \(= \sqrt {0,16} .\sqrt {64} \) \(= 0,4.8 \) \(= 3,2\)
b) \(\sqrt {8,{{1.10}^3}} \) \(= \sqrt {81} .\sqrt {{{10}^2}} \) \(= 9.10 \) \(= 90\)
c) \(\sqrt {12.250.1,2} \) \(= \sqrt {12.25.10.1,2} \) \(= \sqrt {12.25.12} \) \(= \sqrt {12.25.12} \) \(= \sqrt {{{25.12}^2}} \) \(= \sqrt {25} .\sqrt {{{12}^2}} \) \(= 5.12 \) \(= 60\)
d) \(\sqrt {28} .\sqrt 7 \) \(= \sqrt {28.7} \) \(= \sqrt {4.7.7} \) \(= \sqrt {4} .\sqrt {{{7}^2}}\) \(= 2.7 \) \(= 14\)
e) \(\sqrt {4,9} .\sqrt {30} .\sqrt {12} \) \(= \sqrt {4,9.30.12} \) \(= \sqrt {49.3.12} \) \(= \sqrt {49.36} \) \(= \sqrt {49} .\sqrt {36}\) \(= 7.6 \) \(= 42\)
Video hướng dẫn giải
Trả lời câu hỏi Thực hành 4 trang 49 SGK Toán 9 Chân trời sáng tạo
Rút gọn các biểu thức sau:
a) \(\sqrt {500} \)
b) \(\sqrt {5a} .\sqrt {20a} \) với a \( \ge \)0
c) \(\sqrt {18.{{\left( {2 - a} \right)}^2}} \) với a > 2
Phương pháp giải:
Dựa vào tính chất \(\sqrt {a.b} = \sqrt a .\sqrt b \) với a, b > 0
Lời giải chi tiết:
a) \(\sqrt {500} = \sqrt {5.100} = \sqrt 5 .\sqrt {100} = 10\sqrt 5 \)
b) \(\sqrt {5a} .\sqrt {20a} = \sqrt {5a.20a} = \sqrt {100{a^2}} = \sqrt {100} .\sqrt {{a^2}} = 10a\)
c) \(\sqrt {18.{{\left( {2 - a} \right)}^2}} = \sqrt {9.2.{{\left( {2 - a} \right)}^2}} \)\( = \sqrt 9 .\sqrt 2 .\sqrt {{{\left( {2 - a} \right)}^2}} \)\( = 3\sqrt 2 .\left| {2 - a} \right| = 3\sqrt 2 (a - 2)\)
Video hướng dẫn giải
Trả lời câu hỏi Thực hành 5 trang 49 SGK Toán 9 Chân trời sáng tạo
Đưa thừa số vào trong dấu căn bậc hai:
a) \(5.\sqrt 2 \)
b) \( - 10\sqrt 7 \)
c) \(2a\sqrt {\frac{3}{{10a}}} \) với a > 0
Phương pháp giải:
Dựa vào tính chất \(\sqrt {a.b} = \sqrt a .\sqrt b \) với a, b > 0
Lời giải chi tiết:
a) \(5.\sqrt 2 = \sqrt {{5^2}.2} = \sqrt {50} \)
b) \( - 10\sqrt 7 = - \sqrt {{{10}^2}.7} = - \sqrt {700} \)
c) \(\sqrt {{{\left( {2a} \right)}^2}.\frac{3}{{10a}}} = \sqrt {\frac{{12{a^2}}}{{10a}}} = \sqrt {\frac{{6a}}{5}} \).
Video hướng dẫn giải
Trả lời câu hỏi Vận dụng 1 trang 49 SGK Toán 9 Chân trời sáng tạo
Tính diện tích của hình chữ nhật và hình vuông trong hoạt động khởi động. Biết mỗi ô vuông nhỏ có độ dài cạnh là 1. Diện tích của hai hình đó bằng nhau không?
Phương pháp giải:
Dựa vào công thức tính diện tích hình chữ nhật và hình vuông.
Lời giải chi tiết:
Độ dài chiều dài hình chữ nhật là: \(\sqrt {{4^2} + {2^2}} = 2\sqrt 5 \)
Độ dài chiều rộng hình chữ nhật là: \(\sqrt {{2^2} + {1^2}} = \sqrt 5 \)
Diện tích hình chữ nhật là: \(2\sqrt 5 .\sqrt 5 = 2.5 = 10\)
Độ dài cạnh hình vuông là: \(\sqrt {{3^2} + {1^2}} = \sqrt {10} \)
Diện tích hình vuông là: \({\left( {\sqrt {10} } \right)^2} = 10\)
Vậy diện tích hai hình bằng nhau.
Mục 2 của chương trình Toán 9 tập 1 - Chân trời sáng tạo tập trung vào việc ôn tập và hệ thống hóa kiến thức về hàm số bậc nhất. Các bài tập trong mục này thường yêu cầu học sinh vận dụng các kiến thức đã học để giải quyết các bài toán thực tế, rèn luyện kỹ năng tư duy logic và khả năng giải quyết vấn đề.
Bài tập này yêu cầu học sinh nhắc lại các khái niệm cơ bản về hàm số bậc nhất, bao gồm định nghĩa, dạng tổng quát, hệ số góc, giao điểm với các trục tọa độ. Đồng thời, học sinh cần biết cách xác định hàm số bậc nhất khi cho trước các yếu tố khác nhau.
Bài tập này tập trung vào việc vẽ đồ thị hàm số bậc nhất. Học sinh cần nắm vững các bước vẽ đồ thị, bao gồm xác định các điểm đặc biệt (giao điểm với các trục tọa độ), vẽ đường thẳng đi qua các điểm đó. Ngoài ra, học sinh cần biết cách đọc thông tin từ đồ thị hàm số bậc nhất.
Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số bậc nhất để giải quyết các bài toán thực tế, ví dụ như tính quãng đường đi được của một vật chuyển động đều, tính tiền điện tiêu thụ, tính lợi nhuận của một doanh nghiệp. Đây là cơ hội để học sinh rèn luyện kỹ năng giải quyết vấn đề và áp dụng kiến thức vào cuộc sống.
Để giúp các em học sinh hiểu rõ hơn về cách giải các bài tập trong mục 2, chúng tôi xin trình bày hướng dẫn giải chi tiết từng bài tập:
Ngoài sách giáo khoa, các em học sinh có thể tham khảo thêm các tài liệu sau để học tốt môn Toán 9:
Hy vọng rằng với hướng dẫn giải chi tiết và những lưu ý trên, các em học sinh sẽ tự tin giải quyết các bài tập trong mục 2 trang 47, 48, 49 SGK Toán 9 tập 1 - Chân trời sáng tạo. Chúc các em học tập tốt!