Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 9 tập 2. Bài viết này sẽ hướng dẫn bạn giải bài tập 12 trang 22 SGK Toán 9 tập 2 - Chân trời sáng tạo một cách nhanh chóng và hiệu quả.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, đặc biệt là với những bài tập đòi hỏi tư duy và vận dụng kiến thức. Vì vậy, chúng tôi luôn cố gắng cung cấp những lời giải rõ ràng, chi tiết, kèm theo các giải thích cụ thể để bạn có thể hiểu rõ bản chất của bài toán.
Tính nhẩm nghiệm của các phương trình sau và kiểm tra kết quả bằng máy tính cầm tay. a) (14{x^2} - 13x - 27 = 0) b) (5,4{x^2} + 8x + 2,6 = 0) c) (frac{2}{3}{x^2} + 2x - frac{8}{3} = 0) d) (3{x^2} - (3 + sqrt 5 )x + sqrt 5 = 0)
Đề bài
Tính nhẩm nghiệm của các phương trình sau và kiểm tra kết quả bằng máy tính cầm tay.
a) \(14{x^2} - 13x - 27 = 0\)
b) \(5,4{x^2} + 8x + 2,6 = 0\)
c) \(\frac{2}{3}{x^2} + 2x - \frac{8}{3} = 0\)
d) \(3{x^2} - (3 + \sqrt 5 )x + \sqrt 5 = 0\)
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Dựa vào: Nếu phương trình \(a{x^2} + bx + c = 0(a \ne 0)\)có a + b + c = 0 thì phương trình có một nghiệm là \({x_1} = 1\) , nghiệm còn lại là \({x_2} = \frac{c}{a}\).
Nếu phương trình \(a{x^2} + bx + c = 0(a \ne 0)\)có a - b + c = 0 thì phương trình có một nghiệm là \({x_1} = - 1\) , nghiệm còn lại là \({x_2} = - \frac{c}{a}\).
Lời giải chi tiết
a) Phương trình \(14{x^2} - 13x - 27 = 0\)có a - b + c = 14 – (-13) - 27= 0.
Vậy phương trình có hai nghiệm là \({x_1} = - 1\); \({x_2} = - \frac{c}{a} = \frac{{27}}{{14}}\).
b) Phương trình \(5,4{x^2} + 8x + 2,6 = 0\) có a - b + c = 5,4 - 8 + 2,6 = 0.
Vậy phương trình có hai nghiệm là \({x_1} = - 1\); \({x_2} = - \frac{c}{a} = - \frac{{2,6}}{{5,4}} = - \frac{{13}}{{27}}\).
c) Phương trình \(\frac{2}{3}{x^2} + 2x - \frac{8}{3} = 0\)có a + b + c = \(\frac{2}{3} + 2 - \frac{8}{3} = 0\).
Vậy phương trình có hai nghiệm là \({x_1} = 1\); \({x_2} = \frac{c}{a} = - \frac{8}{3}:\frac{2}{3} = - 4\).
d) Phương trình \(3{x^2} - (3 + \sqrt 5 )x + \sqrt 5 = 0\) có a + b + c = \(3 - (3 + \sqrt 5 ) + \sqrt 5 = 0\).
Vậy phương trình có hai nghiệm là \({x_1} = 1\); \({x_2} = \frac{c}{a} = \frac{{\sqrt 5 }}{3}\).
Bài tập 12 trang 22 SGK Toán 9 tập 2 - Chân trời sáng tạo thuộc chương trình học Toán 9, tập trung vào việc vận dụng các kiến thức về hàm số bậc nhất và hàm số bậc hai để giải quyết các bài toán thực tế. Bài tập này yêu cầu học sinh phải nắm vững các khái niệm về hệ số góc, giao điểm của đồ thị hàm số, và các phương pháp giải phương trình bậc hai.
Trước khi bắt đầu giải bài tập, chúng ta cần phân tích kỹ đề bài để xác định rõ yêu cầu và các dữ kiện đã cho. Bài tập 12 trang 22 thường yêu cầu học sinh:
Để giúp bạn hiểu rõ hơn về cách giải bài tập này, chúng ta sẽ cùng nhau đi qua từng bước giải một cách chi tiết. (Nội dung giải bài tập cụ thể sẽ được trình bày chi tiết tại đây, bao gồm các bước thực hiện, công thức sử dụng, và giải thích rõ ràng cho từng bước.)
Để làm rõ hơn các khái niệm và phương pháp giải, chúng ta sẽ xem xét một ví dụ minh họa cụ thể. (Ví dụ minh họa sẽ được trình bày chi tiết tại đây, bao gồm đề bài, lời giải, và giải thích.)
Ngoài bài tập 12 trang 22, còn rất nhiều bài tập tương tự khác trong SGK Toán 9 tập 2 - Chân trời sáng tạo. Dưới đây là một số dạng bài tập thường gặp:
Để giải các bài tập về hàm số bậc nhất và bậc hai một cách hiệu quả, bạn có thể áp dụng một số mẹo sau:
Hàm số có rất nhiều ứng dụng trong thực tế, ví dụ như:
Bài tập 12 trang 22 SGK Toán 9 tập 2 - Chân trời sáng tạo là một bài tập quan trọng giúp bạn củng cố kiến thức về hàm số bậc nhất và bậc hai. Hy vọng rằng với những hướng dẫn chi tiết và ví dụ minh họa trong bài viết này, bạn sẽ có thể giải bài tập này một cách dễ dàng và hiệu quả. Chúc bạn học tập tốt!
Công thức | Mô tả |
---|---|
y = ax + b | Hàm số bậc nhất |
y = ax2 + bx + c | Hàm số bậc hai |
Δ = b2 - 4ac | Biệt thức của phương trình bậc hai |
Nguồn: SGK Toán 9 tập 2 - Chân trời sáng tạo |