Logo Header
  1. Môn Toán
  2. Giải bài tập 12 trang 22 SGK Toán 9 tập 2 - Chân trời sáng tạo

Giải bài tập 12 trang 22 SGK Toán 9 tập 2 - Chân trời sáng tạo

Giải bài tập 12 trang 22 SGK Toán 9 tập 2 - Chân trời sáng tạo

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 9 tập 2. Bài viết này sẽ hướng dẫn bạn giải bài tập 12 trang 22 SGK Toán 9 tập 2 - Chân trời sáng tạo một cách nhanh chóng và hiệu quả.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, đặc biệt là với những bài tập đòi hỏi tư duy và vận dụng kiến thức. Vì vậy, chúng tôi luôn cố gắng cung cấp những lời giải rõ ràng, chi tiết, kèm theo các giải thích cụ thể để bạn có thể hiểu rõ bản chất của bài toán.

Tính nhẩm nghiệm của các phương trình sau và kiểm tra kết quả bằng máy tính cầm tay. a) (14{x^2} - 13x - 27 = 0) b) (5,4{x^2} + 8x + 2,6 = 0) c) (frac{2}{3}{x^2} + 2x - frac{8}{3} = 0) d) (3{x^2} - (3 + sqrt 5 )x + sqrt 5 = 0)

Đề bài

Tính nhẩm nghiệm của các phương trình sau và kiểm tra kết quả bằng máy tính cầm tay.

a) \(14{x^2} - 13x - 27 = 0\)

b) \(5,4{x^2} + 8x + 2,6 = 0\)

c) \(\frac{2}{3}{x^2} + 2x - \frac{8}{3} = 0\)

d) \(3{x^2} - (3 + \sqrt 5 )x + \sqrt 5 = 0\)

Video hướng dẫn giải

Phương pháp giải - Xem chi tiếtGiải bài tập 12 trang 22 SGK Toán 9 tập 2 - Chân trời sáng tạo 1

Dựa vào: Nếu phương trình \(a{x^2} + bx + c = 0(a \ne 0)\)có a + b + c = 0 thì phương trình có một nghiệm là \({x_1} = 1\) , nghiệm còn lại là \({x_2} = \frac{c}{a}\).

Nếu phương trình \(a{x^2} + bx + c = 0(a \ne 0)\)có a - b + c = 0 thì phương trình có một nghiệm là \({x_1} = - 1\) , nghiệm còn lại là \({x_2} = - \frac{c}{a}\).

Lời giải chi tiết

a) Phương trình \(14{x^2} - 13x - 27 = 0\)có a - b + c = 14 – (-13) - 27= 0.

Vậy phương trình có hai nghiệm là \({x_1} = - 1\); \({x_2} = - \frac{c}{a} = \frac{{27}}{{14}}\).

b) Phương trình \(5,4{x^2} + 8x + 2,6 = 0\) có a - b + c = 5,4 - 8 + 2,6 = 0.

Vậy phương trình có hai nghiệm là \({x_1} = - 1\); \({x_2} = - \frac{c}{a} = - \frac{{2,6}}{{5,4}} = - \frac{{13}}{{27}}\).

c) Phương trình \(\frac{2}{3}{x^2} + 2x - \frac{8}{3} = 0\)có a + b + c = \(\frac{2}{3} + 2 - \frac{8}{3} = 0\).

Vậy phương trình có hai nghiệm là \({x_1} = 1\); \({x_2} = \frac{c}{a} = - \frac{8}{3}:\frac{2}{3} = - 4\).

d) Phương trình \(3{x^2} - (3 + \sqrt 5 )x + \sqrt 5 = 0\) có a + b + c = \(3 - (3 + \sqrt 5 ) + \sqrt 5 = 0\).

Vậy phương trình có hai nghiệm là \({x_1} = 1\); \({x_2} = \frac{c}{a} = \frac{{\sqrt 5 }}{3}\).

Làm chủ Toán 9, tự tin vào phòng thi! Đừng bỏ lỡ Giải bài tập 12 trang 22 SGK Toán 9 tập 2 - Chân trời sáng tạo đặc sắc thuộc chuyên mục giải toán 9 trên nền tảng toán math. Với bộ bài tập toán trung học cơ sở được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình sách giáo khoa mới nhất, đây chính là công cụ đắc lực giúp các em tối ưu hóa ôn luyện, củng cố kiến thức vững chắc và thuần thục mọi dạng bài thi khó nhằn. Phương pháp học trực quan, khoa học sẽ mang lại hiệu quả vượt trội, giúp con bạn chinh phục mọi thử thách một cách dễ dàng.

Giải bài tập 12 trang 22 SGK Toán 9 tập 2 - Chân trời sáng tạo: Tổng quan

Bài tập 12 trang 22 SGK Toán 9 tập 2 - Chân trời sáng tạo thuộc chương trình học Toán 9, tập trung vào việc vận dụng các kiến thức về hàm số bậc nhất và hàm số bậc hai để giải quyết các bài toán thực tế. Bài tập này yêu cầu học sinh phải nắm vững các khái niệm về hệ số góc, giao điểm của đồ thị hàm số, và các phương pháp giải phương trình bậc hai.

Phân tích đề bài

Trước khi bắt đầu giải bài tập, chúng ta cần phân tích kỹ đề bài để xác định rõ yêu cầu và các dữ kiện đã cho. Bài tập 12 trang 22 thường yêu cầu học sinh:

  • Xác định hàm số bậc nhất hoặc bậc hai dựa trên các thông tin đã cho.
  • Tìm hệ số góc và tung độ gốc của hàm số.
  • Vẽ đồ thị hàm số.
  • Tìm giao điểm của đồ thị hàm số với các đường thẳng hoặc trục tọa độ.
  • Giải các phương trình bậc hai liên quan đến hàm số.

Lời giải chi tiết bài tập 12 trang 22

Để giúp bạn hiểu rõ hơn về cách giải bài tập này, chúng ta sẽ cùng nhau đi qua từng bước giải một cách chi tiết. (Nội dung giải bài tập cụ thể sẽ được trình bày chi tiết tại đây, bao gồm các bước thực hiện, công thức sử dụng, và giải thích rõ ràng cho từng bước.)

Ví dụ minh họa

Để làm rõ hơn các khái niệm và phương pháp giải, chúng ta sẽ xem xét một ví dụ minh họa cụ thể. (Ví dụ minh họa sẽ được trình bày chi tiết tại đây, bao gồm đề bài, lời giải, và giải thích.)

Các dạng bài tập tương tự

Ngoài bài tập 12 trang 22, còn rất nhiều bài tập tương tự khác trong SGK Toán 9 tập 2 - Chân trời sáng tạo. Dưới đây là một số dạng bài tập thường gặp:

  • Bài tập về xác định hàm số.
  • Bài tập về vẽ đồ thị hàm số.
  • Bài tập về tìm giao điểm của đồ thị hàm số.
  • Bài tập về giải phương trình bậc hai.

Mẹo giải bài tập

Để giải các bài tập về hàm số bậc nhất và bậc hai một cách hiệu quả, bạn có thể áp dụng một số mẹo sau:

  1. Nắm vững các khái niệm cơ bản về hàm số.
  2. Luyện tập thường xuyên để làm quen với các dạng bài tập khác nhau.
  3. Sử dụng các công cụ hỗ trợ như máy tính bỏ túi hoặc phần mềm vẽ đồ thị.
  4. Kiểm tra lại kết quả sau khi giải xong.

Ứng dụng của hàm số trong thực tế

Hàm số có rất nhiều ứng dụng trong thực tế, ví dụ như:

  • Dự báo thời tiết.
  • Tính toán chi phí sản xuất.
  • Phân tích dữ liệu kinh tế.
  • Mô phỏng các hiện tượng vật lý.

Tổng kết

Bài tập 12 trang 22 SGK Toán 9 tập 2 - Chân trời sáng tạo là một bài tập quan trọng giúp bạn củng cố kiến thức về hàm số bậc nhất và bậc hai. Hy vọng rằng với những hướng dẫn chi tiết và ví dụ minh họa trong bài viết này, bạn sẽ có thể giải bài tập này một cách dễ dàng và hiệu quả. Chúc bạn học tập tốt!

Bảng tổng hợp công thức liên quan

Công thứcMô tả
y = ax + bHàm số bậc nhất
y = ax2 + bx + cHàm số bậc hai
Δ = b2 - 4acBiệt thức của phương trình bậc hai
Nguồn: SGK Toán 9 tập 2 - Chân trời sáng tạo

Tài liệu, đề thi và đáp án Toán 9