Chào mừng các em học sinh đến với chuyên mục giải bài tập Toán 9 tập 1 của giaitoan.edu.vn. Ở bài viết này, chúng tôi sẽ cung cấp lời giải chi tiết và dễ hiểu cho các bài tập trong mục 1 trang 42, 43 sách giáo khoa Toán 9 tập 1 - Chân trời sáng tạo.
Mục tiêu của chúng tôi là giúp các em nắm vững kiến thức, rèn luyện kỹ năng giải toán và đạt kết quả tốt nhất trong học tập.
Có hai khối bê tông hình lập phương A và B có thể tích lần lượt là 8 dm3 và 15 dm3 (Hình 1). a) Tính độ dài cạnh của khối bê tông A. b) Gọi x (dm) là độ dài cạnh của khối bê tông B. Thay ? bằng số thích hợp để có đẳng thức: x3 = ?
Video hướng dẫn giải
Trả lời câu hỏi Thực hành 1 trang 43 SGK Toán 9 Chân trời sáng tạo
Tìm căn bậc ba của mỗi số sau:
a) -1
b) 64
c) – 0,064
d) \(\frac{1}{{27}}\)
Phương pháp giải:
Dựa vào VD1 trang 42 làm tương tự.
Lời giải chi tiết:
a) Ta có (-1)3 = 1, suy ra \(\sqrt[3]{{ - 1}}\) = - 1
b) Ta có 43 = 64, suy ra \(\sqrt[3]{{64}} = 4\)
c) Ta có (-0,4)3 = - 0,064, suy ra \(\sqrt[3]{{ - 0,064}} = - 0,4\)
d) Ta có \({\left( {\frac{1}{3}} \right)^3} = \frac{1}{{27}}\), suy ra \(\sqrt[3]{{\frac{1}{{27}}}} = \frac{1}{3}\).
Video hướng dẫn giải
Trả lời câu hỏi Thực hành 2 trang 43 SGK Toán 9 Chân trời sáng tạo
Tính giá trị của các biểu thức:
a) A = \(\sqrt[3]{{8000}} + \sqrt[3]{{0,125}}\)
b) B = \(\sqrt[3]{{{{12}^3}}} - \sqrt[3]{{{{( - 11)}^3}}}\)
c) C = \({\left( {\sqrt[3]{4}} \right)^3} + {\left( {\sqrt[3]{{ - 5}}} \right)^3}\)
Phương pháp giải:
Dựa vào phần c VD2 trang 43 làm tương tự.
Lời giải chi tiết:
a) A = \(\sqrt[3]{{8000}} + \sqrt[3]{{0,125}}\)
\(\begin{array}{l} = \sqrt[3]{{{{(20)}^3}}} + \sqrt[3]{{{{\left( {0,5} \right)}^3}}}\\ = 20 + 0,5\\ = 20,5\end{array}\)
b) B = \(\sqrt[3]{{{{12}^3}}} - \sqrt[3]{{{{( - 11)}^3}}}\)
\(\begin{array}{l}\sqrt[3]{{{{12}^3}}} - \sqrt[3]{{{{( - 11)}^3}}}\\ = 12 - ( - 11)\\ = 23\end{array}\)
c) C = \({\left( {\sqrt[3]{4}} \right)^3} + {\left( {\sqrt[3]{{ - 5}}} \right)^3}\)
\(\begin{array}{l}{\left( {\sqrt[3]{4}} \right)^3} + {\left( {\sqrt[3]{{ - 5}}} \right)^3}\\ = 4 - 5\\ = - 1\end{array}\)
Video hướng dẫn giải
Trả lời câu hỏi Hoạt động 1 trang 42 SGK Toán 9 Chân trời sáng tạo
Có hai khối bê tông hình lập phương A và B có thể tích lần lượt là 8 dm3 và 15 dm3 (Hình 1).
a) Tính độ dài cạnh của khối bê tông A.
b) Gọi x (dm) là độ dài cạnh của khối bê tông B. Thay ? bằng số thích hợp để có đẳng thức: x3 = ?
Phương pháp giải:
- Dựa vào công thức thể tích lập phương: V = cạnh.cạnh.cạnh
suy ra cạnh = \(\sqrt[3]{V}\)
- VB = x3
Lời giải chi tiết:
a) Độ dài cạnh của khối bê tông A là: \(\sqrt[3]{V} = \sqrt[3]{8} = 2\) dm
b) VB = x3 = 15.
Video hướng dẫn giải
Trả lời câu hỏi Hoạt động 1 trang 42 SGK Toán 9 Chân trời sáng tạo
Có hai khối bê tông hình lập phương A và B có thể tích lần lượt là 8 dm3 và 15 dm3 (Hình 1).
a) Tính độ dài cạnh của khối bê tông A.
b) Gọi x (dm) là độ dài cạnh của khối bê tông B. Thay ? bằng số thích hợp để có đẳng thức: x3 = ?
Phương pháp giải:
- Dựa vào công thức thể tích lập phương: V = cạnh.cạnh.cạnh
suy ra cạnh = \(\sqrt[3]{V}\)
- VB = x3
Lời giải chi tiết:
a) Độ dài cạnh của khối bê tông A là: \(\sqrt[3]{V} = \sqrt[3]{8} = 2\) dm
b) VB = x3 = 15.
Video hướng dẫn giải
Trả lời câu hỏi Thực hành 1 trang 43 SGK Toán 9 Chân trời sáng tạo
Tìm căn bậc ba của mỗi số sau:
a) -1
b) 64
c) – 0,064
d) \(\frac{1}{{27}}\)
Phương pháp giải:
Dựa vào VD1 trang 42 làm tương tự.
Lời giải chi tiết:
a) Ta có (-1)3 = 1, suy ra \(\sqrt[3]{{ - 1}}\) = - 1
b) Ta có 43 = 64, suy ra \(\sqrt[3]{{64}} = 4\)
c) Ta có (-0,4)3 = - 0,064, suy ra \(\sqrt[3]{{ - 0,064}} = - 0,4\)
d) Ta có \({\left( {\frac{1}{3}} \right)^3} = \frac{1}{{27}}\), suy ra \(\sqrt[3]{{\frac{1}{{27}}}} = \frac{1}{3}\).
Video hướng dẫn giải
Trả lời câu hỏi Thực hành 2 trang 43 SGK Toán 9 Chân trời sáng tạo
Tính giá trị của các biểu thức:
a) A = \(\sqrt[3]{{8000}} + \sqrt[3]{{0,125}}\)
b) B = \(\sqrt[3]{{{{12}^3}}} - \sqrt[3]{{{{( - 11)}^3}}}\)
c) C = \({\left( {\sqrt[3]{4}} \right)^3} + {\left( {\sqrt[3]{{ - 5}}} \right)^3}\)
Phương pháp giải:
Dựa vào phần c VD2 trang 43 làm tương tự.
Lời giải chi tiết:
a) A = \(\sqrt[3]{{8000}} + \sqrt[3]{{0,125}}\)
\(\begin{array}{l} = \sqrt[3]{{{{(20)}^3}}} + \sqrt[3]{{{{\left( {0,5} \right)}^3}}}\\ = 20 + 0,5\\ = 20,5\end{array}\)
b) B = \(\sqrt[3]{{{{12}^3}}} - \sqrt[3]{{{{( - 11)}^3}}}\)
\(\begin{array}{l}\sqrt[3]{{{{12}^3}}} - \sqrt[3]{{{{( - 11)}^3}}}\\ = 12 - ( - 11)\\ = 23\end{array}\)
c) C = \({\left( {\sqrt[3]{4}} \right)^3} + {\left( {\sqrt[3]{{ - 5}}} \right)^3}\)
\(\begin{array}{l}{\left( {\sqrt[3]{4}} \right)^3} + {\left( {\sqrt[3]{{ - 5}}} \right)^3}\\ = 4 - 5\\ = - 1\end{array}\)
Mục 1 của chương trình Toán 9 tập 1 - Chân trời sáng tạo tập trung vào việc ôn tập và hệ thống hóa kiến thức về hàm số bậc nhất. Các bài tập trong trang 42 và 43 SGK Toán 9 tập 1 yêu cầu học sinh vận dụng các kiến thức đã học để giải quyết các bài toán thực tế, rèn luyện tư duy logic và kỹ năng giải toán.
Bài 1 yêu cầu học sinh xác định các yếu tố của hàm số bậc nhất (hệ số a, b), vẽ đồ thị hàm số, và tìm các điểm thuộc đồ thị. Để giải bài này, học sinh cần nắm vững định nghĩa hàm số bậc nhất, công thức tính hệ số góc, và cách vẽ đồ thị hàm số.
Bài 2 đưa ra một bài toán thực tế liên quan đến hàm số bậc nhất, ví dụ như tính quãng đường đi được của một vật chuyển động đều. Học sinh cần phân tích bài toán, xây dựng hàm số mô tả mối quan hệ giữa các đại lượng, và giải phương trình để tìm ra kết quả.
Bài 3 yêu cầu học sinh giải hệ phương trình bậc nhất hai ẩn. Để giải bài này, học sinh có thể sử dụng các phương pháp như phương pháp thế, phương pháp cộng đại số, hoặc phương pháp đồ thị.
Phương pháp | Mô tả |
---|---|
Phương pháp thế | Biểu diễn một ẩn theo ẩn còn lại từ một phương trình, sau đó thay vào phương trình kia để tìm ẩn còn lại. |
Phương pháp cộng đại số | Cộng hoặc trừ hai phương trình để loại bỏ một ẩn, sau đó giải phương trình còn lại để tìm ẩn còn lại. |
Phương pháp đồ thị | Vẽ đồ thị của hai phương trình trên cùng một hệ trục tọa độ. Giao điểm của hai đồ thị là nghiệm của hệ phương trình. |
Khi giải các bài tập trong mục 1 trang 42, 43 SGK Toán 9 tập 1 - Chân trời sáng tạo, học sinh cần lưu ý những điều sau:
Hy vọng rằng với lời giải chi tiết và những lưu ý trên, các em học sinh sẽ tự tin giải quyết các bài tập trong mục 1 trang 42, 43 SGK Toán 9 tập 1 - Chân trời sáng tạo. Chúc các em học tập tốt!