Logo Header
  1. Môn Toán
  2. Giải bài tập 5 trang 22 SGK Toán 9 tập 2 - Chân trời sáng tạo

Giải bài tập 5 trang 22 SGK Toán 9 tập 2 - Chân trời sáng tạo

Giải bài tập 5 trang 22 SGK Toán 9 tập 2 - Chân trời sáng tạo

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 9 tập 2. Bài viết này sẽ hướng dẫn bạn giải bài tập 5 trang 22 SGK Toán 9 tập 2 - Chân trời sáng tạo một cách nhanh chóng và hiệu quả.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, đặc biệt là với những bài tập đòi hỏi tư duy và vận dụng kiến thức. Vì vậy, chúng tôi luôn cố gắng cung cấp những lời giải rõ ràng, chi tiết, kèm theo các giải thích cụ thể để bạn có thể hiểu rõ bản chất của bài toán.

Nghiệm của phương trình ({x^2} - 14x + 13 = 0) là A. ({x_1} = - 1;{x_2} = 13) B. ({x_1} = - 1;{x_2} = - 13) C. ({x_1} = 1;{x_2} = - 13) D. ({x_1} = 1;{x_2} = 13)

Đề bài

Nghiệm của phương trình \({x^2} - 14x + 13 = 0\) là

A. \({x_1} = - 1;{x_2} = 13\)

B. \({x_1} = - 1;{x_2} = - 13\)

C. \({x_1} = 1;{x_2} = - 13\)

D. \({x_1} = 1;{x_2} = 13\)

Video hướng dẫn giải

Phương pháp giải - Xem chi tiếtGiải bài tập 5 trang 22 SGK Toán 9 tập 2 - Chân trời sáng tạo 1

Dựa vào công thức nghiệm của phương trình bậc hai:

Cho phương trình \(a{x^2} + bx + c = 0(a \ne 0)\) và biệt thức \(\Delta = {b^2} - 4ac\).

+ Nếu \(\Delta \)> 0 thì phương trình có hai nghiệm phân biệt:

\({x_1} = \frac{{ - b + \sqrt \Delta }}{{2a}},{x_2} = \frac{{ - b - \sqrt \Delta }}{{2a}}\);

+ Nếu \(\Delta \) = 0 thì phương trình có nghiệm kép \({x_1} = {x_2} = - \frac{b}{{2a}}\);

+ Nếu \(\Delta \) < 0 thì phương trình vô nghiệm.

Lời giải chi tiết

\({x^2} - 14x + 13 = 0\)

Ta có a = 1, b = -14, c = 13

\(\Delta = {( - 14)^2} - 4.1.13 = 144 > 0\)

Vậy phương trình có hai nghiệm phân biệt là:

\({x_1} = \frac{{14 + \sqrt {144} }}{2} = 13;{x_2} = \frac{{14 - \sqrt {144} }}{2} = 1\)

Chọn đáp án D.

Làm chủ Toán 9, tự tin vào phòng thi! Đừng bỏ lỡ Giải bài tập 5 trang 22 SGK Toán 9 tập 2 - Chân trời sáng tạo đặc sắc thuộc chuyên mục bài tập toán 9 trên nền tảng toán. Với bộ bài tập toán thcs được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình sách giáo khoa mới nhất, đây chính là công cụ đắc lực giúp các em tối ưu hóa ôn luyện, củng cố kiến thức vững chắc và thuần thục mọi dạng bài thi khó nhằn. Phương pháp học trực quan, khoa học sẽ mang lại hiệu quả vượt trội, giúp con bạn chinh phục mọi thử thách một cách dễ dàng.

Giải bài tập 5 trang 22 SGK Toán 9 tập 2 - Chân trời sáng tạo: Hướng dẫn chi tiết

Bài tập 5 trang 22 SGK Toán 9 tập 2 - Chân trời sáng tạo thuộc chương trình đại số, tập trung vào việc giải phương trình bậc hai một ẩn. Để giải quyết bài tập này, học sinh cần nắm vững các kiến thức cơ bản về phương trình bậc hai, bao gồm:

  • Dạng tổng quát của phương trình bậc hai: ax2 + bx + c = 0 (a ≠ 0)
  • Công thức nghiệm tổng quát: x = (-b ± √(b2 - 4ac)) / 2a
  • Định lý về dấu của Δ (delta):
    • Δ > 0: Phương trình có hai nghiệm phân biệt
    • Δ = 0: Phương trình có nghiệm kép
    • Δ < 0: Phương trình vô nghiệm

Phân tích bài tập 5 trang 22 SGK Toán 9 tập 2 - Chân trời sáng tạo

Bài tập 5 thường bao gồm một số phương trình bậc hai khác nhau, yêu cầu học sinh tìm nghiệm của từng phương trình. Để giải bài tập này một cách hiệu quả, bạn nên thực hiện theo các bước sau:

  1. Xác định các hệ số a, b, c của phương trình.
  2. Tính Δ (delta): Δ = b2 - 4ac
  3. Xác định số nghiệm của phương trình dựa vào dấu của Δ.
  4. Tính nghiệm của phương trình bằng công thức nghiệm tổng quát (nếu Δ ≥ 0).
  5. Kiểm tra lại nghiệm bằng cách thay nghiệm vào phương trình ban đầu.

Ví dụ minh họa giải bài tập 5 trang 22 SGK Toán 9 tập 2 - Chân trời sáng tạo

Giả sử chúng ta có phương trình: 2x2 - 5x + 2 = 0

  1. Xác định hệ số: a = 2, b = -5, c = 2
  2. Tính Δ: Δ = (-5)2 - 4 * 2 * 2 = 25 - 16 = 9
  3. Xác định số nghiệm: Δ > 0, phương trình có hai nghiệm phân biệt
  4. Tính nghiệm:
    • x1 = (5 + √9) / (2 * 2) = (5 + 3) / 4 = 2
    • x2 = (5 - √9) / (2 * 2) = (5 - 3) / 4 = 0.5
  5. Kiểm tra nghiệm: Thay x = 2 và x = 0.5 vào phương trình ban đầu, ta thấy cả hai nghiệm đều thỏa mãn.

Lưu ý khi giải bài tập 5 trang 22 SGK Toán 9 tập 2 - Chân trời sáng tạo

Để tránh sai sót khi giải bài tập, bạn cần lưu ý những điều sau:

  • Chú ý dấu của các hệ số a, b, c. Sai dấu sẽ dẫn đến kết quả sai.
  • Tính toán Δ một cách cẩn thận. Δ là yếu tố quyết định số nghiệm của phương trình.
  • Sử dụng đúng công thức nghiệm tổng quát.
  • Kiểm tra lại nghiệm để đảm bảo tính chính xác.

Bài tập luyện tập

Để củng cố kiến thức và kỹ năng giải phương trình bậc hai, bạn có thể tự giải các bài tập sau:

  • Giải phương trình: x2 - 4x + 3 = 0
  • Giải phương trình: 3x2 + 7x + 2 = 0
  • Giải phương trình: x2 - 6x + 9 = 0

Kết luận

Bài tập 5 trang 22 SGK Toán 9 tập 2 - Chân trời sáng tạo là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng giải phương trình bậc hai. Bằng cách nắm vững các kiến thức cơ bản và thực hành thường xuyên, bạn sẽ có thể giải quyết bài tập này một cách dễ dàng và hiệu quả. Chúc bạn học tốt!

Tài liệu, đề thi và đáp án Toán 9