Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 9 tập 1 - Chân trời sáng tạo. Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng giải bài tập 1 trang 66 một cách hiệu quả.
Chúng tôi hiểu rằng việc tự học Toán đôi khi gặp nhiều khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải chi tiết, kèm theo các bước giải thích rõ ràng, giúp bạn hiểu sâu sắc bản chất của bài toán.
Cho tam giác ABC vuông tại A. Tính các tỉ số lượng giác của góc B trong mỗi trường hợp sau: a) BC = 5 cm; AB = 3 cm. b) BC = 13cm; AC = 12 cm c) BC = (5sqrt 2 ) cm; AB = 5 cm d) AB = (asqrt 3 ) ; AC = a
Đề bài
Cho tam giác ABC vuông tại A. Tính các tỉ số lượng giác của góc B trong mỗi trường hợp sau:
a) BC = 5 cm; AB = 3 cm.
b) BC = 13cm; AC = 12 cm
c) BC = \(5\sqrt 2 \) cm; AB = 5 cm
d) AB = \(a\sqrt 3 \); AC = a
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
- Đọc kĩ dữ liệu đầu bài để vẽ hình, sử dụng:
- Áp dụng định lí Pythagore vào tam giác vuông để tìm cạnh chưa biết.Sau đó tính:
+ Tỉ số giữa cạnh đối và cạnh huyền được gọi là sin của góc \(\alpha \), kí hiệu sin\(\alpha \).
+ Tỉ số giữa cạnh kề và cạnh huyền được gọi là côsin của góc \(\alpha \), kí hiệu cos\(\alpha \).
+ Tỉ số giữa cạnh đối và cạnh kề được gọi là tang của góc \(\alpha \), kí hiệu tan\(\alpha \).
+ Tỉ số giữa cạnh kề và cạnh đối được gọi là côtang của góc \(\alpha \), kí hiệu cot\(\alpha \).
Lời giải chi tiết
a) BC = 5 cm; AB = 3 cm.
Áp dụng định lí Pythagore vào tam giác vuông ABC, ta có:
\(AC = \sqrt {B{C^2} - A{B^2}} = \sqrt {{5^2} - {3^2}} = 4\)
Các tỉ số lượng giác của \(\widehat {ABC}\) và \(\widehat {ACB}\) là:
sin \(\widehat {ABC}\) = cos \(\widehat {ACB}\) = \(\frac{{AC}}{{BC}} = \frac{4}{5} = 0,8\)
cos \(\widehat {ABC}\) = sin \(\widehat {ACB}\) = \(\frac{{AB}}{{BC}} = \frac{3}{5} = 0,6\)
tan \(\widehat {ABC}\) = cot \(\widehat {ACB}\) = \(\frac{{AC}}{{AB}} = \frac{4}{3} \approx 1,33\)
cot \(\widehat {ABC}\) = tan \(\widehat {ACB}\) = \(\frac{1}{{\tan \widehat {ABC}}} = \frac{3}{4} = 0,75\)
b) BC = 13cm; AC = 12 cm
Áp dụng định lí Pythagore vào tam giác vuông ABC, ta có:
\(AB = \sqrt {B{C^2} - A{C^2}} = \sqrt {{{13}^2} - {{12}^2}} = 5\)
Các tỉ số lượng giác của \(\widehat {ABC}\) và \(\widehat {ACB}\) là:
sin \(\widehat {ABC}\) = cos \(\widehat {ACB}\) = \(\frac{{AC}}{{BC}} = \frac{{12}}{{13}} \approx 0,92\)
cos \(\widehat {ABC}\) = sin \(\widehat {ACB}\) = \(\frac{{AB}}{{BC}} = \frac{5}{{13}} \approx 0,38\)
tan \(\widehat {ABC}\) = cot \(\widehat {ACB}\) = \(\frac{{AC}}{{AB}} = \frac{{12}}{5} = 2,4\)
cot \(\widehat {ABC}\) = tan \(\widehat {ACB}\) = \(\frac{1}{{\tan \widehat {ABC}}} = \frac{5}{{12}} \approx 0,42\)
c) BC = \(5\sqrt 2 \) cm; AB = 5 cm
Áp dụng định lí Pythagore vào tam giác vuông ABC, ta có:
\(AC = \sqrt {B{C^2} - A{B^2}} = \sqrt {{{(5\sqrt 2 )}^2} - {5^2}} = 5\)
Các tỉ số lượng giác của \(\widehat {ABC}\) và \(\widehat {ACB}\) là:
sin \(\widehat {ABC}\) = cos \(\widehat {ACB}\) = \(\frac{{AC}}{{BC}} = \frac{5}{{5\sqrt 2 }} = \frac{\sqrt 2}{{2 }} \approx 0,71\)
cos \(\widehat {ABC}\) = sin \(\widehat {ACB}\) = \(\frac{{AB}}{{BC}} = \frac{5}{{5\sqrt 2 }} = \frac{\sqrt 2}{{2 }} \approx 0,71\)
tan \(\widehat {ABC}\) = cot \(\widehat {ACB}\) = \(\frac{{AC}}{{AB}} = \frac{5}{5} = 1\)
cot \(\widehat {ABC}\) = tan \(\widehat {ACB}\) = \(\frac{1}{{\tan \widehat {ABC}}} = 1\)
d) AB = \(a\sqrt 3 \); AC = a
Áp dụng định lí Pythagore vào tam giác vuông ABC, ta có:
\(BC = \sqrt {A{C^2} + A{B^2}} = \sqrt {{a^2} + {{\left( {a\sqrt 3 } \right)}^2}} = 2a\)
Các tỉ số lượng giác của \(\widehat {ABC}\) và \(\widehat {ACB}\) là:
sin \(\widehat {ABC}\) = cos \(\widehat {ACB}\) = \(\frac{{AC}}{{BC}} = \frac{{a}}{{2a}} = \frac{{1 }}{2} = 0,5\)
cos \(\widehat {ABC}\) = sin \(\widehat {ACB}\) = \(\frac{{AB}}{{BC}} = \frac{{a\sqrt 3 }}{{2a}} = \frac{{\sqrt 3 }}{2} \approx 0,87\)
tan \(\widehat {ABC}\) = cot \(\widehat {ACB}\) = \(\frac{{AC}}{{AB}} = \frac{a}{{a\sqrt 3 }} = \frac{\sqrt 3}{{3 }}\approx 0,58\)
cot \(\widehat {ABC}\) = tan \(\widehat {ACB}\) = \(\frac{1}{{\tan \widehat {ABC}}} = \sqrt 3 \approx 1,73 \)
Bài tập 1 trang 66 SGK Toán 9 tập 1 - Chân trời sáng tạo thuộc chương trình học về hàm số bậc nhất. Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số bậc nhất để xác định hệ số góc và tung độ gốc của hàm số, từ đó vẽ đồ thị hàm số và giải các bài toán liên quan.
Bài tập 1 bao gồm các câu hỏi nhỏ, yêu cầu học sinh thực hiện các thao tác sau:
Để xác định hệ số góc (a) và tung độ gốc (b) của hàm số y = ax + b dựa vào đồ thị, ta thực hiện các bước sau:
Để viết phương trình đường thẳng đi qua hai điểm A(x1, y1) và B(x2, y2), ta thực hiện các bước sau:
Để xác định xem một điểm M(x0, y0) có thuộc đồ thị của hàm số y = ax + b hay không, ta thực hiện các bước sau:
Ví dụ 1: Cho hàm số y = 2x - 1. Xác định hệ số góc và tung độ gốc của hàm số.
Giải:
Hệ số góc a = 2
Tung độ gốc b = -1
Ví dụ 2: Viết phương trình đường thẳng đi qua hai điểm A(1, 2) và B(3, 6).
Giải:
Độ dốc m = (6 - 2) / (3 - 1) = 2
Phương trình đường thẳng: y - 2 = 2(x - 1) => y = 2x
Bài tập 1 trang 66 SGK Toán 9 tập 1 - Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về hàm số bậc nhất. Hy vọng với hướng dẫn chi tiết và ví dụ minh họa trên, các bạn học sinh sẽ tự tin giải bài tập một cách hiệu quả. Chúc các bạn học tốt!