Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 9 tập 2. Bài viết này sẽ hướng dẫn bạn giải quyết các bài tập trong mục 2 trang 12 sách giáo khoa Toán 9 tập 2 - Chân trời sáng tạo.
Chúng tôi hiểu rằng việc tự học Toán đôi khi gặp nhiều khó khăn. Vì vậy, chúng tôi luôn cố gắng cung cấp những giải pháp tối ưu, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.
a) Bằng cách đưa về dạng phương trình tích, hãy giải các phương trình sau: i) (3{x^2} - 12x = 0) ii) ({x^2} - 16 = 0) b) Để đưa các phương trình bậc hai dạng đặc biệt trên về phương trình tích ta đã dùng phép biến đổi nào?
Video hướng dẫn giải
Trả lời câu hỏi Hoạt động 2 trang 12 SGK Toán 9 Chân trời sáng tạo
a) Bằng cách đưa về dạng phương trình tích, hãy giải các phương trình sau:
i) \(3{x^2} - 12x = 0\)
ii) \({x^2} - 16 = 0\)
b) Để đưa các phương trình bậc hai dạng đặc biệt trên về phương trình tích ta đã dùng phép biến đổi nào?
Phương pháp giải:
Sử dụng phương pháp đặt nhân tử chung và hằng đẳng thức để đưa về dạng phương trình tích.
Lời giải chi tiết:
a) i) \(3{x^2} - 12x = 0\)
\(3x\left( {x - 4} \right) = 0\)
\(3x = 0\) hoặc \(x - 4 = 0\)
\(x = 0\) hoặc \(x = 4\)
Vậy phương trình có hai nghiệm là \( x = 0\) và \( x = 4\).
ii) \({x^2} - 16 = 0\)
\(\left( {x - 4} \right)\left( {x + 4} \right) = 0\)
\(x - 4 = 0\) hoặc \(x + 4 = 0\)
\(x = 4\) hoặc \(x = -4\)
Vậy phương trình có hai nghiệm là \(x = 4\) và \(x = -4\).
b) Để đưa các phương trình bậc hai dạng đặc biệt trên về phương trình tích ta đã dùng phương pháp đặt nhân tử chung và hằng đẳng thức.
Video hướng dẫn giải
Trả lời câu hỏi Thực hành 2 trang 12SGK Toán 9 Chân trời sáng tạo
Giải các phương trình:
a) \(3{x^2} - 27 = 0\)
b) \({x^2} - 10x + 25 = 16\)
Phương pháp giải:
a) Sử dụng quy tắc chuyển vế rồi giải phương trình.
b) Sử dụng hằng đẳng thức để đưa về dạng phương trình tích rồi giải phương trình.
Lời giải chi tiết:
a) \(3{x^2} - 27 = 0\)
\(\begin{array}{l}3{x^2} = 27\\{x^2} = 9\\{x^2} = {3^2}\end{array}\)
x = 3 hoặc x = -3
Vậy phương trình có hai nghiệm x = 3 và x = -3.
b) \({x^2} - 10x + 25 = 16\)
\({\left( {x - 5} \right)^2} = 16\)
\(x - 5 = 4\) hoặc \({x - 5 = - 4}\)
\({x = 9}\) hoặc \({x = 1}\)
Vậy phương trình có hai nghiệm là x = 9 và x = 1.
Video hướng dẫn giải
Trả lời câu hỏi Hoạt động 2 trang 12 SGK Toán 9 Chân trời sáng tạo
a) Bằng cách đưa về dạng phương trình tích, hãy giải các phương trình sau:
i) \(3{x^2} - 12x = 0\)
ii) \({x^2} - 16 = 0\)
b) Để đưa các phương trình bậc hai dạng đặc biệt trên về phương trình tích ta đã dùng phép biến đổi nào?
Phương pháp giải:
Sử dụng phương pháp đặt nhân tử chung và hằng đẳng thức để đưa về dạng phương trình tích.
Lời giải chi tiết:
a) i) \(3{x^2} - 12x = 0\)
\(3x\left( {x - 4} \right) = 0\)
\(3x = 0\) hoặc \(x - 4 = 0\)
\(x = 0\) hoặc \(x = 4\)
Vậy phương trình có hai nghiệm là \( x = 0\) và \( x = 4\).
ii) \({x^2} - 16 = 0\)
\(\left( {x - 4} \right)\left( {x + 4} \right) = 0\)
\(x - 4 = 0\) hoặc \(x + 4 = 0\)
\(x = 4\) hoặc \(x = -4\)
Vậy phương trình có hai nghiệm là \(x = 4\) và \(x = -4\).
b) Để đưa các phương trình bậc hai dạng đặc biệt trên về phương trình tích ta đã dùng phương pháp đặt nhân tử chung và hằng đẳng thức.
Video hướng dẫn giải
Trả lời câu hỏi Thực hành 2 trang 12SGK Toán 9 Chân trời sáng tạo
Giải các phương trình:
a) \(3{x^2} - 27 = 0\)
b) \({x^2} - 10x + 25 = 16\)
Phương pháp giải:
a) Sử dụng quy tắc chuyển vế rồi giải phương trình.
b) Sử dụng hằng đẳng thức để đưa về dạng phương trình tích rồi giải phương trình.
Lời giải chi tiết:
a) \(3{x^2} - 27 = 0\)
\(\begin{array}{l}3{x^2} = 27\\{x^2} = 9\\{x^2} = {3^2}\end{array}\)
x = 3 hoặc x = -3
Vậy phương trình có hai nghiệm x = 3 và x = -3.
b) \({x^2} - 10x + 25 = 16\)
\({\left( {x - 5} \right)^2} = 16\)
\(x - 5 = 4\) hoặc \({x - 5 = - 4}\)
\({x = 9}\) hoặc \({x = 1}\)
Vậy phương trình có hai nghiệm là x = 9 và x = 1.
Mục 2 của chương trình Toán 9 tập 2 - Chân trời sáng tạo thường tập trung vào các chủ đề như hàm số bậc nhất, đồ thị hàm số, và ứng dụng của hàm số trong giải quyết các bài toán thực tế. Việc nắm vững kiến thức trong mục này là vô cùng quan trọng, vì nó là nền tảng cho các kiến thức nâng cao hơn trong chương trình học.
Để giúp các em học sinh hiểu rõ hơn về nội dung và phương pháp giải các bài tập trong mục 2 trang 12, chúng ta sẽ đi vào phân tích chi tiết từng bài tập:
Bài tập này yêu cầu học sinh xác định các hệ số a, b trong hàm số bậc nhất y = ax + b dựa vào các thông tin cho trước, chẳng hạn như đồ thị hàm số hoặc các điểm thuộc đồ thị.
Phương pháp giải:
Bài tập này yêu cầu học sinh vẽ đồ thị của hàm số bậc nhất y = ax + b. Để vẽ đồ thị, ta cần xác định ít nhất hai điểm thuộc đồ thị và nối chúng lại với nhau.
Phương pháp giải:
Bài tập này yêu cầu học sinh tìm tọa độ giao điểm của hai đường thẳng. Giao điểm của hai đường thẳng là điểm mà cả hai đường thẳng đều đi qua.
Phương pháp giải:
Để tìm giao điểm của hai đường thẳng, ta giải hệ phương trình hai ẩn, trong đó mỗi phương trình tương ứng với một đường thẳng.
Hàm số bậc nhất có rất nhiều ứng dụng trong giải toán, đặc biệt là trong các bài toán liên quan đến vật lý, kinh tế, và các lĩnh vực khác. Ví dụ, hàm số bậc nhất có thể được sử dụng để mô tả mối quan hệ giữa quãng đường đi được và thời gian, hoặc giữa chi phí sản xuất và số lượng sản phẩm.
Hy vọng rằng với những hướng dẫn chi tiết trên, các em học sinh đã có thể tự tin giải quyết các bài tập trong mục 2 trang 12 SGK Toán 9 tập 2 - Chân trời sáng tạo. Chúc các em học tập tốt!
Bài tập | Nội dung chính | Phương pháp giải |
---|---|---|
Bài 1 | Xác định hàm số bậc nhất | Thay tọa độ điểm vào phương trình |
Bài 2 | Vẽ đồ thị hàm số bậc nhất | Chọn điểm, vẽ đồ thị |
Bài 3 | Tìm giao điểm hai đường thẳng | Giải hệ phương trình |