Logo Header
  1. Môn Toán
  2. Giải bài tập 4 trang 21 SGK Toán 9 tập 2 - Chân trời sáng tạo

Giải bài tập 4 trang 21 SGK Toán 9 tập 2 - Chân trời sáng tạo

Giải bài tập 4 trang 21 SGK Toán 9 tập 2 - Chân trời sáng tạo

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 9 tập 2. Bài viết này sẽ hướng dẫn bạn giải bài tập 4 trang 21 SGK Toán 9 tập 2 - Chân trời sáng tạo một cách nhanh chóng và hiệu quả.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, đặc biệt là với những bài tập đòi hỏi tư duy và vận dụng kiến thức. Vì vậy, chúng tôi luôn cố gắng cung cấp những lời giải rõ ràng, chi tiết, kèm theo các giải thích cụ thể để bạn có thể hiểu rõ bản chất của bài toán.

Cho phương trình ({x^2} - 19x - 5 = 0). Gọi ({x_1},{x_2}) là hai nghiệm của phương trình. Không giải phương trình, hãy tính giá trị của các biểu thức: a) A = ({x_1}^2 + {x_2}^2) b) B = (frac{2}{{{x_1}}} + frac{2}{{{x_2}}}) c) C = (frac{3}{{{x_1} + 2}} + frac{3}{{{x_2} + 2}})

Đề bài

Cho phương trình \({x^2} - 19x - 5 = 0\). Gọi \({x_1},{x_2}\) là hai nghiệm của phương trình. Không giải phương trình, hãy tính giá trị của các biểu thức:

a) A = \({x_1}^2 + {x_2}^2\)

b) B = \(\frac{2}{{{x_1}}} + \frac{2}{{{x_2}}}\)

c) C = \(\frac{3}{{{x_1} + 2}} + \frac{3}{{{x_2} + 2}}\)

Video hướng dẫn giải

Phương pháp giải - Xem chi tiếtGiải bài tập 4 trang 21 SGK Toán 9 tập 2 - Chân trời sáng tạo 1

Dựa vào: Nếu phương trình bậc hai \(a{x^2} + bx + c = 0(a \ne 0)\)có hai nghiệm \({x_1},{x_2}\) thì tổng và tích của hai nghiệm đó là:

S = \({x_1} + {x_2} = - \frac{b}{a}\); P = \({x_1}.{x_2} = \frac{c}{a}\)

Lời giải chi tiết

Phương trình \({x^2} - 19x - 5 = 0\) có \(\Delta = {( - 19)^2} - 4.( - 5) = 381 > 0\) nên nó có hai nghiệm phân biệt \({x_1},{x_2}\).

Theo định lí Viète, ta có:

\({x_1} + {x_2} = - \frac{b}{a} = 19\);\({x_1}.{x_2} = \frac{c}{a} = - 5\)

a) Ta có: \({\left( {{x_1} + {x_2}} \right)^2} = {x_1}^2 + 2{x_1}{x_2} + {x_2}^2\)

Suy ra

\(A ={x_1}^2 + {x_2}^2 = {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} \\= {19^2} - 2.( - 5) = 371\)

b) Ta có:

\(B =\frac{2}{{{x_1}}} + \frac{2}{{{x_2}}} \\= \frac{{2\left( {{x_1} + {x_2}} \right)}}{{{x_1}.{x_2}}}= \frac{{2.19}}{{ - 5}} = - \frac{{38}}{5}\)

c) Ta có: \(C =\frac{3}{{{x_1} + 2}} + \frac{3}{{{x_2} + 2}} = \frac{{3.\left( {{x_2} + 2 + {x_1} + 2} \right)}}{{\left( {{x_1} + 2} \right).\left( {{x_2} + 2} \right)}}\)

\( = \frac{{3.\left( {{x_2} + {x_1} + 4} \right)}}{{{x_1}{x_2} + 2({x_2} + {x_1}) + 4}} = \frac{{3.\left( {19 + 4} \right)}}{{ - 5 + 2.19 + 4}} = \frac{{69}}{{37}}\).

Làm chủ Toán 9, tự tin vào phòng thi! Đừng bỏ lỡ Giải bài tập 4 trang 21 SGK Toán 9 tập 2 - Chân trời sáng tạo đặc sắc thuộc chuyên mục sách bài tập toán 9 trên nền tảng học toán. Với bộ bài tập toán thcs được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình sách giáo khoa mới nhất, đây chính là công cụ đắc lực giúp các em tối ưu hóa ôn luyện, củng cố kiến thức vững chắc và thuần thục mọi dạng bài thi khó nhằn. Phương pháp học trực quan, khoa học sẽ mang lại hiệu quả vượt trội, giúp con bạn chinh phục mọi thử thách một cách dễ dàng.

Giải bài tập 4 trang 21 SGK Toán 9 tập 2 - Chân trời sáng tạo: Hướng dẫn chi tiết

Bài tập 4 trang 21 SGK Toán 9 tập 2 - Chân trời sáng tạo thuộc chương trình học Toán 9, tập trung vào việc vận dụng các kiến thức về hàm số bậc nhất và hàm số bậc hai để giải quyết các bài toán thực tế. Để giải quyết bài tập này một cách hiệu quả, chúng ta cần nắm vững các khái niệm cơ bản như:

  • Hàm số bậc nhất: Định nghĩa, dạng tổng quát, cách xác định hệ số góc và tung độ gốc.
  • Hàm số bậc hai: Định nghĩa, dạng tổng quát, cách xác định hệ số a, b, c và đỉnh của parabol.
  • Đồ thị hàm số: Cách vẽ đồ thị hàm số bậc nhất và hàm số bậc hai.
  • Ứng dụng của hàm số: Giải các bài toán liên quan đến thực tế, như tìm điểm giao nhau của đồ thị hàm số, tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số.

Phân tích bài toán

Trước khi bắt đầu giải bài tập, chúng ta cần đọc kỹ đề bài và xác định rõ yêu cầu của bài toán. Bài tập 4 trang 21 SGK Toán 9 tập 2 - Chân trời sáng tạo thường yêu cầu chúng ta:

  • Xác định hàm số phù hợp với dữ kiện đề bài.
  • Tìm các hệ số của hàm số.
  • Vẽ đồ thị hàm số.
  • Giải các phương trình hoặc bất phương trình liên quan đến hàm số.
  • Rút ra kết luận và trả lời câu hỏi của bài toán.

Lời giải chi tiết

Để giúp bạn hiểu rõ hơn về cách giải bài tập này, chúng ta sẽ cùng nhau đi qua từng bước giải một cách chi tiết. Giả sử bài toán yêu cầu chúng ta tìm phương trình đường thẳng đi qua hai điểm A(x1, y1) và B(x2, y2). Chúng ta có thể sử dụng công thức sau:

(y - y1) / (x - x1) = (y2 - y1) / (x2 - x1)

Sau khi tìm được phương trình đường thẳng, chúng ta có thể thay các giá trị x vào phương trình để tìm các giá trị y tương ứng. Điều này sẽ giúp chúng ta vẽ được đồ thị của đường thẳng.

Ví dụ minh họa

Để minh họa cho cách giải bài tập này, chúng ta hãy xem xét một ví dụ cụ thể. Giả sử chúng ta có hai điểm A(1, 2) và B(3, 4). Chúng ta muốn tìm phương trình đường thẳng đi qua hai điểm này.

Áp dụng công thức trên, chúng ta có:

(y - 2) / (x - 1) = (4 - 2) / (3 - 1)

(y - 2) / (x - 1) = 2 / 2

(y - 2) / (x - 1) = 1

y - 2 = x - 1

y = x + 1

Vậy phương trình đường thẳng đi qua hai điểm A(1, 2) và B(3, 4) là y = x + 1.

Luyện tập thêm

Để củng cố kiến thức và kỹ năng giải bài tập về hàm số, bạn có thể luyện tập thêm với các bài tập tương tự trong SGK Toán 9 tập 2 - Chân trời sáng tạo. Ngoài ra, bạn cũng có thể tìm kiếm các bài tập trực tuyến trên các trang web học toán uy tín.

Tổng kết

Bài tập 4 trang 21 SGK Toán 9 tập 2 - Chân trời sáng tạo là một bài tập quan trọng giúp bạn rèn luyện kỹ năng giải toán về hàm số. Hy vọng rằng, với hướng dẫn chi tiết và ví dụ minh họa trên, bạn đã có thể hiểu rõ hơn về cách giải bài tập này. Chúc bạn học tập tốt!

Khái niệmGiải thích
Hàm số bậc nhấtHàm số có dạng y = ax + b, trong đó a và b là các hằng số.
Hàm số bậc haiHàm số có dạng y = ax^2 + bx + c, trong đó a, b và c là các hằng số.

Tài liệu, đề thi và đáp án Toán 9