Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 9 tập 2. Bài viết này sẽ hướng dẫn bạn giải bài tập 3 trang 17 thuộc chương trình Toán 9 Chân trời sáng tạo một cách nhanh chóng và hiệu quả.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải chi tiết, kèm theo các bước giải rõ ràng, giúp bạn nắm vững kiến thức và kỹ năng giải toán.
Giải các phương trình: a) x(x + 8) = 20 b) (x(3x - 4) = 2{x^2} + 5) c) ({(x - 5)^2} + 7x = 65) d) ((2x + 3)(2x - 3) = 5(2x + 3))
Đề bài
Giải các phương trình:
a) x(x + 8) = 20
b) \(x(3x - 4) = 2{x^2} + 5\)
c) \({(x - 5)^2} + 7x = 65\)
d) \((2x + 3)(2x - 3) = 5(2x + 3)\)
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Biến đổi đưa về dạng phương trình bậc hai 1 ẩn rồi giải phương trình.
Dựa vào công thức nghiệm của phương trình bậc hai:
Cho phương trình \(a{x^2} + bx + c = 0(a \ne 0)\) và biệt thức \(\Delta = {b^2} - 4ac\).
+ Nếu \(\Delta \)> 0 thì phương trình có hai nghiệm phân biệt:
\({x_1} = \frac{{ - b + \sqrt \Delta }}{{2a}},{x_2} = \frac{{ - b - \sqrt \Delta }}{{2a}}\);
+ Nếu \(\Delta \) = 0 thì phương trình có nghiệm kép \({x_1} = {x_2} = - \frac{b}{{2a}}\);
+ Nếu \(\Delta \) < 0 thì phương trình vô nghiệm.
Lời giải chi tiết
a) x(x + 8) = 20
\({x^2} + 8x - 20 = 0\)
Ta có a = 1, b = 8, c = -20
\(\Delta = {8^2} - 4.1.\left( { - 20} \right) = 144 > 0\)
Vậy phương trình có hai nghiệm phân biệt là:
\({x_1} = \frac{{ - 8 + \sqrt {144} }}{2} = 2;{x_2} = \frac{{ - 8 - \sqrt {144} }}{2} = - 10\)
b) \(x(3x - 4) = 2{x^2} + 5\)
\(\begin{array}{l}3{x^2} - 4x - 2{x^2} - 5 = 0\\{x^2} - 4x - 5 = 0\end{array}\)
Ta có a = 1, b = -4, c = -5
\(\Delta = {( - 4)^2} - 4.1.\left( { - 5} \right) = 36 > 0\)
Vậy phương trình có hai nghiệm phân biệt là:
\({x_1} = \frac{{4 + \sqrt {36} }}{2} = 5;{x_2} = \frac{{4 - \sqrt {36} }}{2} = - 1\)
c) \({(x - 5)^2} + 7x = 65\)
\(\begin{array}{l}{x^2} - 10x + 25 + 7x - 65 = 0\\{x^2} - 3x - 40 = 0\end{array}\)
Ta có a = 1, b = -3, c = -40
\(\Delta = {( - 3)^2} - 4.1.( - 40) = 169 > 0\)
Vậy phương trình có hai nghiệm phân biệt là:
\({x_1} = \frac{{3 + \sqrt {169} }}{2} = 8;{x_2} = \frac{{3 - \sqrt {169} }}{2} = - 5\)
d) \((2x + 3)(2x - 3) = 5(2x + 3)\)
\(\begin{array}{l}{(2x)^2} - 9 - 10x - 15 = 0\\4{x^2} - 10x - 24 = 0\end{array}\)
Ta có a = 4, b = -10, c = -24
\(\Delta = {( - 10)^2} - 4.4.( - 24) = 484 > 0\)
Vậy phương trình có hai nghiệm phân biệt là:
\({x_1} = \frac{{10 + \sqrt {484} }}{{2.4}} = 4;{x_2} = \frac{{10 - \sqrt {484} }}{{2.4}} = \frac{{ - 3}}{2}\).
Bài tập 3 trang 17 SGK Toán 9 tập 2 - Chân trời sáng tạo thuộc chương trình học về hàm số bậc nhất. Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số bậc nhất để xác định hệ số góc và tung độ gốc của hàm số, cũng như vẽ đồ thị hàm số.
Bài tập 3 bao gồm các câu hỏi nhỏ, yêu cầu học sinh:
Để giải bài tập 3 trang 17 SGK Toán 9 tập 2 - Chân trời sáng tạo một cách hiệu quả, bạn cần nắm vững các kiến thức sau:
Câu a: Cho hàm số y = 2x - 3. Xác định hệ số góc và tung độ gốc của hàm số.
Lời giải: Hàm số y = 2x - 3 có dạng y = ax + b, trong đó a = 2 và b = -3. Vậy hệ số góc là 2 và tung độ gốc là -3.
Câu b: Viết phương trình đường thẳng đi qua hai điểm A(1; 2) và B(3; 6).
Lời giải: Áp dụng công thức phương trình đường thẳng đi qua hai điểm, ta có: (y - 2) / (x - 1) = (6 - 2) / (3 - 1) = 2. Suy ra y - 2 = 2(x - 1) hay y = 2x.
Câu c: Vẽ đồ thị hàm số y = -x + 1.
Lời giải: Để vẽ đồ thị hàm số y = -x + 1, ta xác định hai điểm thuộc đồ thị, ví dụ: A(0; 1) và B(1; 0). Nối hai điểm này lại với nhau, ta được đồ thị hàm số.
Để củng cố kiến thức về hàm số bậc nhất, bạn có thể luyện tập thêm các bài tập sau:
Bài tập 3 trang 17 SGK Toán 9 tập 2 - Chân trời sáng tạo là một bài tập quan trọng giúp bạn hiểu rõ hơn về hàm số bậc nhất. Hy vọng với lời giải chi tiết và phương pháp giải hiệu quả mà giaitoan.edu.vn cung cấp, bạn sẽ tự tin giải quyết bài tập này và các bài tập tương tự trong tương lai.