Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 9. Bài viết này sẽ hướng dẫn bạn cách giải bài 11 trang 57 trong sách bài tập Toán 9 - Cánh Diều tập 1. Chúng tôi cam kết mang đến cho bạn những phương pháp giải toán hiệu quả và chính xác nhất.
Mục tiêu của chúng tôi là giúp bạn nắm vững kiến thức Toán học, tự tin giải quyết các bài tập và đạt kết quả cao trong học tập.
Áp dụng quy tắc về căn bậc hai của một bình phương, hãy tính: a) \(\sqrt {{2^2}.{{\left( { - 9} \right)}^2}} \) b) \(\sqrt {{{\left( {\sqrt {11} - 4} \right)}^2}} \) c) \(\sqrt {{{\left( {\frac{1}{{\sqrt 2 }} - \frac{1}{{\sqrt 3 }}} \right)}^2}} \) d) \(\sqrt {9 + 4\sqrt 5 } \)
Đề bài
Áp dụng quy tắc về căn bậc hai của một bình phương, hãy tính:
a) \(\sqrt {{2^2}.{{\left( { - 9} \right)}^2}} \)
b) \(\sqrt {{{\left( {\sqrt {11} - 4} \right)}^2}} \)
c) \(\sqrt {{{\left( {\frac{1}{{\sqrt 2 }} - \frac{1}{{\sqrt 3 }}} \right)}^2}} \)
d) \(\sqrt {9 + 4\sqrt 5 } \)
Phương pháp giải - Xem chi tiết
Áp dụng: Với mọi số a, ta có \(\sqrt {{a^2}} = \left| a \right|\)
Lời giải chi tiết
a) \(\sqrt {{2^2}.{{\left( { - 9} \right)}^2}} = \sqrt {{2^2}{{.9}^2}} = \sqrt {{{18}^2}} = 18\)
b) \(\sqrt {{{\left( {\sqrt {11} - 4} \right)}^2}} = \left| {\sqrt {11} - 4} \right| = 4 - \sqrt {11} \)
(do \(4 > \sqrt {11} \)).
c) \(\sqrt {{{\left( {\frac{1}{{\sqrt 2 }} - \frac{1}{{\sqrt 3 }}} \right)}^2}} = \left| {\frac{1}{{\sqrt 2 }} - \frac{1}{{\sqrt 3 }}} \right| = \frac{1}{{\sqrt 2 }} - \frac{1}{{\sqrt 3 }}\)
(do \(\frac{1}{{\sqrt 2 }} > \frac{1}{{\sqrt 3 }}\))
d) \(\sqrt {9 + 4\sqrt 5 } = \sqrt {{2^2} + 2.2.\sqrt 5 + {{\left( {\sqrt 5 } \right)}^2}} \)
\(= \sqrt {{{\left( {2 + \sqrt 5 } \right)}^2}} = \left| {2 + \sqrt 5 } \right| = 2 + \sqrt 5 .\)
Bài 11 trang 57 Sách bài tập Toán 9 - Cánh Diều tập 1 thuộc chương trình học về hàm số bậc nhất. Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số bậc nhất để giải quyết các bài toán thực tế, cụ thể là xác định hàm số và tính giá trị của hàm số tại một điểm cho trước.
Bài 11 thường bao gồm các dạng bài sau:
Để giải bài 11 trang 57 Sách bài tập Toán 9 - Cánh Diều tập 1 hiệu quả, bạn cần nắm vững các kiến thức sau:
Ví dụ 1: Xác định hàm số bậc nhất có hệ số góc bằng 2 và đi qua điểm A(1; 3).
Giải:
Hàm số có dạng y = 2x + b. Thay tọa độ điểm A(1; 3) vào phương trình, ta có: 3 = 2 * 1 + b => b = 1. Vậy hàm số cần tìm là y = 2x + 1.
Ví dụ 2: Cho hàm số y = -x + 5. Tính giá trị của y khi x = -2.
Giải:
Thay x = -2 vào phương trình hàm số, ta có: y = -(-2) + 5 = 7. Vậy khi x = -2 thì y = 7.
Để củng cố kiến thức và kỹ năng giải bài tập về hàm số bậc nhất, bạn nên luyện tập thêm các bài tập tương tự trong sách bài tập và các tài liệu tham khảo khác. Hãy chú trọng việc hiểu rõ bản chất của bài toán và áp dụng các phương pháp giải phù hợp.
Trong quá trình học tập, nếu gặp khó khăn, đừng ngần ngại hỏi thầy cô giáo hoặc bạn bè. Việc trao đổi và thảo luận sẽ giúp bạn hiểu bài sâu sắc hơn và tìm ra những phương pháp giải quyết vấn đề hiệu quả.
Công thức | Mô tả |
---|---|
y = ax + b | Phương trình hàm số bậc nhất |
a | Hệ số góc |
b | Tung độ gốc |
Hy vọng với những hướng dẫn chi tiết và ví dụ minh họa trên, bạn đã có thể tự tin giải bài 11 trang 57 Sách bài tập Toán 9 - Cánh Diều tập 1. Chúc bạn học tập tốt!