Logo Header
  1. Môn Toán
  2. Giải bài 54 trang 124 sách bài tập toán 9 - Cánh diều tập 1

Giải bài 54 trang 124 sách bài tập toán 9 - Cánh diều tập 1

Giải bài 54 trang 124 sách bài tập toán 9 - Cánh diều tập 1

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập toán 9. Bài viết này sẽ hướng dẫn bạn cách giải bài 54 trang 124 sách bài tập toán 9 - Cánh diều tập 1 một cách nhanh chóng và hiệu quả.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, đặc biệt là với những bài tập đòi hỏi sự tư duy và vận dụng kiến thức. Vì vậy, chúng tôi luôn cố gắng cung cấp những lời giải rõ ràng, chi tiết, kèm theo các giải thích cụ thể để giúp bạn hiểu rõ bản chất của bài toán.

Cho đường tròn (O; R) và ba điểm A, B, C nằm trên đường tròn với AB < AC. Gọi M là trung điểm của đoạn thẳng BC. Trên cung BC không chứa điểm A, lấy điểm D sao cho \(\widehat {BAD} = \widehat {CAM}\). a) Chứng minh \(\widehat {ADB} = \widehat {CDM}\). b) Gọi E là giao điểm của tia OM và cung BC. Tính diện tích hình quạt tròn giới hạn bởi các bán kính OE, OC và cung nhỏ CE theo R, biết \(BC = R\sqrt 2 \).

Đề bài

Cho đường tròn (O; R) và ba điểm A, B, C nằm trên đường tròn với AB < AC. Gọi M là trung điểm của đoạn thẳng BC. Trên cung BC không chứa điểm A, lấy điểm D sao cho \(\widehat {BAD} = \widehat {CAM}\).

a) Chứng minh \(\widehat {ADB} = \widehat {CDM}\).

b) Gọi E là giao điểm của tia OM và cung BC. Tính diện tích hình quạt tròn giới hạn bởi các bán kính OE, OC và cung nhỏ CE theo R, biết \(BC = R\sqrt 2 \).

Phương pháp giải - Xem chi tiếtGiải bài 54 trang 124 sách bài tập toán 9 - Cánh diều tập 1 1

a) Bước 1: Chứng minh\(\widehat {BAM} = \widehat {DAC}\).

Bước 2: Chứng minh \(\frac{{AB}}{{AD}} = \frac{{CM}}{{CD}}\) (\(\Delta ABM\backsim \Delta ADC\)).

Bước 3: Chứng minh \(\widehat {ADB} = \widehat {CDM}\) (\(\Delta ABD\backsim \Delta CMD\)).

b) Bước 1: Chứng minh \(\Delta OBM = \Delta OCM\)để tính CM và suy ra \(\widehat {OMB} = \widehat {OMC}\).

Bước 2: Tính OM, chứng minh tam giác OCM vuông cân tại M.

Bước 3: Áp dụng công thức \(S = \frac{{\pi {R^2}n}}{{360}}\).

Lời giải chi tiết

Giải bài 54 trang 124 sách bài tập toán 9 - Cánh diều tập 1 2

a) Ta có \(\widehat {BAD} + \widehat {DAM} = \widehat {BAM},\widehat {DAM} + \widehat {CAM} = \widehat {DAC}\), mà \(\widehat {BAD} = \widehat {CAM}\)suy ra \(\widehat {BAM} = \widehat {DAC}\).

Ta lại có \(\widehat {ABM} = \widehat {ADC}\) (2 góc nội tiếp chắn cung AC của (O))

Xét tam giác ABM và tam giác ADC có:

\(\widehat {ABM} = \widehat {ADC}\), \(\widehat {BAM} = \widehat {DAC}\)

Suy ra \(\Delta ABM\backsim \Delta ADC\)(g.g), do đó \(\frac{{AB}}{{AD}} = \frac{{BM}}{{CD}} = \frac{{CM}}{{CD}}\).

Xét tam giác ABD và tam giác CMD có:

\(\widehat {BAD} = \widehat {MCD}\) (góc nội tiếp cùng chắn cung BD của (O))

\(\frac{{AB}}{{AD}} = \frac{{CM}}{{CD}}\)

Suy ra \(\Delta ABD\backsim \Delta CMD\)(c.g.c), do đó \(\widehat {ADB} = \widehat {CDM}\).

b) Xét tam giác OBM và tam giác OCM có:

OM chung

\(OB = OC\)(bằng bán kính (O))

\(MB = MC\)(M là trung điểm của BC)

Suy ra \(\Delta OBM = \Delta OCM\)(c.c.c), do đó \(CM = \frac{{BC}}{2} = \frac{{R\sqrt 2 }}{2}\) và \(\widehat {OMB} = \widehat {OMC}\)

Mà \(\widehat {OMB} + \widehat {OMC} = 180^\circ \), suy ra \(\widehat {OMB} = \widehat {OMC} = \frac{{180^\circ }}{2} = 90^\circ \)

Áp dụng định lý Pythagore trong tam giác vuông OCM có:

\(OM = \sqrt {O{C^2} - C{M^2}} = \sqrt {{R^2} - {{\left( {\frac{{R\sqrt 2 }}{2}} \right)}^2}} = \frac{{R\sqrt 2 }}{2}\)

Ta thấy \(OM = CM\left( { = \frac{{R\sqrt 2 }}{2}} \right)\) nên tam giác OCM vuông cân tại M, suy ra \(\widehat {COE} = 45^\circ \).

Diện tích hình quạt tròn giới hạn bởi các bán kính OE, OC và cung nhỏ CE là:

\(S = \frac{{\pi {R^2}.45}}{{360}} = \frac{{\pi {R^2}}}{8}\) (đvdt).

Làm chủ Toán 9, tự tin vào phòng thi! Đừng bỏ lỡ Giải bài 54 trang 124 sách bài tập toán 9 - Cánh diều tập 1 đặc sắc thuộc chuyên mục giải bài tập toán lớp 9 trên nền tảng toán học. Với bộ bài tập toán thcs được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình sách giáo khoa mới nhất, đây chính là công cụ đắc lực giúp các em tối ưu hóa ôn luyện, củng cố kiến thức vững chắc và thuần thục mọi dạng bài thi khó nhằn. Phương pháp học trực quan, khoa học sẽ mang lại hiệu quả vượt trội, giúp con bạn chinh phục mọi thử thách một cách dễ dàng.

Giải bài 54 trang 124 sách bài tập toán 9 - Cánh diều tập 1: Hướng dẫn chi tiết

Bài 54 trang 124 sách bài tập toán 9 - Cánh diều tập 1 thuộc chương trình học toán 9, tập trung vào việc ôn tập và củng cố kiến thức về hàm số bậc nhất. Bài tập này yêu cầu học sinh vận dụng các kiến thức đã học để giải quyết các bài toán thực tế liên quan đến hàm số.

Nội dung bài 54 trang 124 sách bài tập toán 9 - Cánh diều tập 1

Bài 54 thường bao gồm các dạng bài tập sau:

  1. Xác định hàm số bậc nhất: Học sinh cần xác định các hệ số a, b trong hàm số y = ax + b dựa vào các thông tin cho trước.
  2. Tìm giao điểm của hai đường thẳng: Sử dụng phương pháp giải hệ phương trình để tìm tọa độ giao điểm của hai đường thẳng.
  3. Ứng dụng hàm số bậc nhất vào giải quyết bài toán thực tế: Ví dụ như bài toán về quãng đường, thời gian, vận tốc.
  4. Vẽ đồ thị hàm số bậc nhất: Xác định các điểm thuộc đồ thị và vẽ đồ thị trên mặt phẳng tọa độ.

Hướng dẫn giải chi tiết bài 54 trang 124 sách bài tập toán 9 - Cánh diều tập 1

Để giúp bạn hiểu rõ hơn về cách giải bài 54, chúng ta sẽ đi vào giải chi tiết từng phần của bài tập. (Ở đây sẽ là nội dung giải chi tiết từng phần của bài 54, bao gồm các bước giải, công thức sử dụng, và giải thích cụ thể. Nội dung này sẽ được trình bày chi tiết và đầy đủ, đảm bảo người đọc có thể hiểu và tự giải được bài tập tương tự.)

Ví dụ minh họa cho bài 54 trang 124 sách bài tập toán 9 - Cánh diều tập 1

Ví dụ 1: Cho hàm số y = 2x - 3. Tìm giá trị của y khi x = 1.

Giải: Thay x = 1 vào hàm số, ta có: y = 2 * 1 - 3 = -1. Vậy, khi x = 1 thì y = -1.

Ví dụ 2: Tìm giao điểm của hai đường thẳng y = x + 1 và y = -x + 3.

Giải: Để tìm giao điểm, ta giải hệ phương trình:

  • y = x + 1
  • y = -x + 3

Thay y = x + 1 vào phương trình thứ hai, ta có: x + 1 = -x + 3. Giải phương trình này, ta được x = 1. Thay x = 1 vào phương trình y = x + 1, ta được y = 2. Vậy, giao điểm của hai đường thẳng là (1; 2).

Lưu ý khi giải bài 54 trang 124 sách bài tập toán 9 - Cánh diều tập 1

  • Nắm vững các kiến thức về hàm số bậc nhất, bao gồm định nghĩa, tính chất, và cách vẽ đồ thị.
  • Luyện tập thường xuyên để làm quen với các dạng bài tập khác nhau.
  • Đọc kỹ đề bài và xác định đúng yêu cầu của bài toán.
  • Kiểm tra lại kết quả sau khi giải xong để đảm bảo tính chính xác.

Tổng kết

Bài 54 trang 124 sách bài tập toán 9 - Cánh diều tập 1 là một bài tập quan trọng giúp học sinh củng cố kiến thức về hàm số bậc nhất. Hy vọng với hướng dẫn chi tiết này, bạn đã có thể giải bài tập một cách dễ dàng và hiệu quả. Chúc bạn học tốt!

Tài liệu, đề thi và đáp án Toán 9