Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập toán 9. Bài viết này sẽ hướng dẫn bạn giải bài 5 trang 35 sách bài tập toán 9 - Cánh diều tập 1 một cách nhanh chóng và hiệu quả.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, đặc biệt là với những bài tập đòi hỏi sự tư duy logic và vận dụng kiến thức đã học. Vì vậy, chúng tôi luôn cố gắng cung cấp những lời giải rõ ràng, chi tiết, kèm theo các giải thích cụ thể để bạn có thể hiểu rõ bản chất của bài toán.
Cho (x,y,z) là các số thực tùy ý. Chứng minh: (begin{array}{l}a){x^2} + {y^2} ge -2xy\b){x^2} + {y^2} + {z^2} ge xy + yz + zx\c)3left( {{x^2} + {y^2} + {z^2}} right) ge {left( {x + y + z} right)^2}end{array})
Đề bài
Cho \(x,y,z\) là các số thực tùy ý. Chứng minh:
\(\begin{array}{l}a){x^2} + {y^2} \ge - 2xy\\b){x^2} + {y^2} + {z^2} \ge xy + yz + zx\\c)3\left( {{x^2} + {y^2} + {z^2}} \right) \ge {\left( {x + y + z} \right)^2}\end{array}\)
Phương pháp giải - Xem chi tiết
a) Áp dụng tính chất của hằng đẳng thức: \({\left( {x + y} \right)^2} \ge 0\)
b) Cộng vế với vế của 3 bất đẳng thức \({\left( {x - y} \right)^2} \ge 0;{\left( {y - z} \right)^2} \ge 0;{\left( {z - x} \right)^2} \ge 0\).
c) Xét hiệu \(3\left( {{x^2} + {y^2} + {z^2}} \right) - {\left( {x + y + z} \right)^2}\).
Lời giải chi tiết
a) Do \({\left( {x + y} \right)^2} \ge 0\forall x,y \in R\) nên \({x^2} + 2xy + {y^2} \ge 0\) hay \({x^2} + {y^2} \ge - 2xy\).
b) Với \(x,y,z\) là các số thực tùy ý ta có:
\({\left( {x - y} \right)^2} \ge 0;{\left( {y - z} \right)^2} \ge 0;{\left( {z - x} \right)^2} \ge 0\).
Cộng vế với vế của 3 bất đẳng thức trên, ta được:
\({\left( {x - y} \right)^2} + {\left( {y - z} \right)^2} + {\left( {z - x} \right)^2} \ge 0\)
\({x^2} - 2xy + {y^2} + {y^2} - 2yz + {z^2} + {z^2} - 2xz + {x^2} \ge 0\)
\(2\left( {{x^2} + {y^2} + {z^2}} \right) \ge 2\left( {xy + yz + xz} \right)\)
Vậy \({x^2} + {y^2} + {z^2} \ge xy + yz + zx\)
c) Xét hiệu
\(\begin{array}{l}3\left( {{x^2} + {y^2} + {z^2}} \right) - {\left( {x + y + z} \right)^2} = 3{x^2} + 3{y^2} + 3{z^2} - {x^2} - {y^2} - {z^2} - 2xy - 2yz - 2zx\\ = \left( {{x^2} - 2xy + {y^2}} \right) + \left( {{y^2} - 2yz + {z^2}} \right) + \left( {{x^2} - 2zx + {z^2}} \right) = {\left( {x - y} \right)^2} + {\left( {y - z} \right)^2} + {\left( {z - x} \right)^2}\end{array}\)
Do \({\left( {x - y} \right)^2} + {\left( {y - z} \right)^2} + {\left( {z - x} \right)^2} \ge 0\) nên \(3\left( {{x^2} + {y^2} + {z^2}} \right) - {\left( {x + y + z} \right)^2}\)
hay \(3\left( {{x^2} + {y^2} + {z^2}} \right) \ge {\left( {x + y + z} \right)^2}\).
Bài 5 trang 35 sách bài tập toán 9 - Cánh diều tập 1 thuộc chương trình đại số, tập trung vào việc giải phương trình bậc hai một ẩn. Bài tập này yêu cầu học sinh vận dụng các kiến thức về công thức nghiệm của phương trình bậc hai, điều kiện xác định của nghiệm, và các phép biến đổi tương đương để tìm ra nghiệm của phương trình.
Bài 5 bao gồm một số phương trình bậc hai khác nhau, yêu cầu học sinh giải và tìm ra các nghiệm của phương trình. Các phương trình có thể có dạng tổng quát ax2 + bx + c = 0, hoặc có thể được biến đổi về dạng này trước khi giải. Một số phương trình có thể có nghiệm kép, nghiệm vô tỉ, hoặc không có nghiệm.
Có nhiều phương pháp để giải phương trình bậc hai, trong đó phổ biến nhất là sử dụng công thức nghiệm. Công thức nghiệm của phương trình ax2 + bx + c = 0 được cho bởi:
x = (-b ± √(b2 - 4ac)) / 2a
Trong đó:
Dựa vào giá trị của biệt thức Δ, ta có thể xác định số nghiệm của phương trình:
Để giúp bạn hiểu rõ hơn về cách giải bài 5 trang 35, chúng ta sẽ cùng nhau giải chi tiết từng phương trình trong bài tập. Dưới đây là lời giải cho từng phương trình:
...
...
...
Khi giải phương trình bậc hai, bạn cần lưu ý một số điều sau:
Phương trình bậc hai có rất nhiều ứng dụng trong thực tế, chẳng hạn như:
Để củng cố kiến thức về phương trình bậc hai, bạn có thể làm thêm một số bài tập luyện tập sau:
Hy vọng rằng bài viết này đã giúp bạn hiểu rõ hơn về cách giải bài 5 trang 35 sách bài tập toán 9 - Cánh diều tập 1. Chúc bạn học tập tốt và đạt kết quả cao trong môn toán!