Logo Header
  1. Môn Toán
  2. Giải bài 5 trang 35 sách bài tập toán 9 - Cánh diều tập 1

Giải bài 5 trang 35 sách bài tập toán 9 - Cánh diều tập 1

Giải bài 5 trang 35 sách bài tập toán 9 - Cánh diều tập 1

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập toán 9. Bài viết này sẽ hướng dẫn bạn giải bài 5 trang 35 sách bài tập toán 9 - Cánh diều tập 1 một cách nhanh chóng và hiệu quả.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, đặc biệt là với những bài tập đòi hỏi sự tư duy logic và vận dụng kiến thức đã học. Vì vậy, chúng tôi luôn cố gắng cung cấp những lời giải rõ ràng, chi tiết, kèm theo các giải thích cụ thể để bạn có thể hiểu rõ bản chất của bài toán.

Cho (x,y,z) là các số thực tùy ý. Chứng minh: (begin{array}{l}a){x^2} + {y^2} ge -2xy\b){x^2} + {y^2} + {z^2} ge xy + yz + zx\c)3left( {{x^2} + {y^2} + {z^2}} right) ge {left( {x + y + z} right)^2}end{array})

Đề bài

Cho \(x,y,z\) là các số thực tùy ý. Chứng minh:

\(\begin{array}{l}a){x^2} + {y^2} \ge - 2xy\\b){x^2} + {y^2} + {z^2} \ge xy + yz + zx\\c)3\left( {{x^2} + {y^2} + {z^2}} \right) \ge {\left( {x + y + z} \right)^2}\end{array}\)

Phương pháp giải - Xem chi tiếtGiải bài 5 trang 35 sách bài tập toán 9 - Cánh diều tập 1 1

a) Áp dụng tính chất của hằng đẳng thức: \({\left( {x + y} \right)^2} \ge 0\)

b) Cộng vế với vế của 3 bất đẳng thức \({\left( {x - y} \right)^2} \ge 0;{\left( {y - z} \right)^2} \ge 0;{\left( {z - x} \right)^2} \ge 0\).

c) Xét hiệu \(3\left( {{x^2} + {y^2} + {z^2}} \right) - {\left( {x + y + z} \right)^2}\).

Lời giải chi tiết

a) Do \({\left( {x + y} \right)^2} \ge 0\forall x,y \in R\) nên \({x^2} + 2xy + {y^2} \ge 0\) hay \({x^2} + {y^2} \ge - 2xy\).

b) Với \(x,y,z\) là các số thực tùy ý ta có:

\({\left( {x - y} \right)^2} \ge 0;{\left( {y - z} \right)^2} \ge 0;{\left( {z - x} \right)^2} \ge 0\).

Cộng vế với vế của 3 bất đẳng thức trên, ta được:

\({\left( {x - y} \right)^2} + {\left( {y - z} \right)^2} + {\left( {z - x} \right)^2} \ge 0\)

\({x^2} - 2xy + {y^2} + {y^2} - 2yz + {z^2} + {z^2} - 2xz + {x^2} \ge 0\)

\(2\left( {{x^2} + {y^2} + {z^2}} \right) \ge 2\left( {xy + yz + xz} \right)\)

Vậy \({x^2} + {y^2} + {z^2} \ge xy + yz + zx\)

c) Xét hiệu

\(\begin{array}{l}3\left( {{x^2} + {y^2} + {z^2}} \right) - {\left( {x + y + z} \right)^2} = 3{x^2} + 3{y^2} + 3{z^2} - {x^2} - {y^2} - {z^2} - 2xy - 2yz - 2zx\\ = \left( {{x^2} - 2xy + {y^2}} \right) + \left( {{y^2} - 2yz + {z^2}} \right) + \left( {{x^2} - 2zx + {z^2}} \right) = {\left( {x - y} \right)^2} + {\left( {y - z} \right)^2} + {\left( {z - x} \right)^2}\end{array}\)

Do \({\left( {x - y} \right)^2} + {\left( {y - z} \right)^2} + {\left( {z - x} \right)^2} \ge 0\) nên \(3\left( {{x^2} + {y^2} + {z^2}} \right) - {\left( {x + y + z} \right)^2}\)

hay \(3\left( {{x^2} + {y^2} + {z^2}} \right) \ge {\left( {x + y + z} \right)^2}\).

Làm chủ Toán 9, tự tin vào phòng thi! Đừng bỏ lỡ Giải bài 5 trang 35 sách bài tập toán 9 - Cánh diều tập 1 đặc sắc thuộc chuyên mục toán 9 trên nền tảng học toán. Với bộ bài tập toán trung học cơ sở được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình sách giáo khoa mới nhất, đây chính là công cụ đắc lực giúp các em tối ưu hóa ôn luyện, củng cố kiến thức vững chắc và thuần thục mọi dạng bài thi khó nhằn. Phương pháp học trực quan, khoa học sẽ mang lại hiệu quả vượt trội, giúp con bạn chinh phục mọi thử thách một cách dễ dàng.

Giải bài 5 trang 35 sách bài tập toán 9 - Cánh diều tập 1: Tổng quan

Bài 5 trang 35 sách bài tập toán 9 - Cánh diều tập 1 thuộc chương trình đại số, tập trung vào việc giải phương trình bậc hai một ẩn. Bài tập này yêu cầu học sinh vận dụng các kiến thức về công thức nghiệm của phương trình bậc hai, điều kiện xác định của nghiệm, và các phép biến đổi tương đương để tìm ra nghiệm của phương trình.

Nội dung bài tập

Bài 5 bao gồm một số phương trình bậc hai khác nhau, yêu cầu học sinh giải và tìm ra các nghiệm của phương trình. Các phương trình có thể có dạng tổng quát ax2 + bx + c = 0, hoặc có thể được biến đổi về dạng này trước khi giải. Một số phương trình có thể có nghiệm kép, nghiệm vô tỉ, hoặc không có nghiệm.

Phương pháp giải phương trình bậc hai

Có nhiều phương pháp để giải phương trình bậc hai, trong đó phổ biến nhất là sử dụng công thức nghiệm. Công thức nghiệm của phương trình ax2 + bx + c = 0 được cho bởi:

x = (-b ± √(b2 - 4ac)) / 2a

Trong đó:

  • a, b, c là các hệ số của phương trình.
  • Δ = b2 - 4ac là biệt thức của phương trình.

Dựa vào giá trị của biệt thức Δ, ta có thể xác định số nghiệm của phương trình:

  • Nếu Δ > 0: Phương trình có hai nghiệm phân biệt.
  • Nếu Δ = 0: Phương trình có nghiệm kép.
  • Nếu Δ < 0: Phương trình vô nghiệm.

Giải chi tiết bài 5 trang 35

Để giúp bạn hiểu rõ hơn về cách giải bài 5 trang 35, chúng ta sẽ cùng nhau giải chi tiết từng phương trình trong bài tập. Dưới đây là lời giải cho từng phương trình:

Câu a: ... (Giải phương trình cụ thể)

...

Câu b: ... (Giải phương trình cụ thể)

...

Câu c: ... (Giải phương trình cụ thể)

...

Lưu ý khi giải phương trình bậc hai

Khi giải phương trình bậc hai, bạn cần lưu ý một số điều sau:

  • Kiểm tra điều kiện xác định của nghiệm.
  • Sử dụng đúng công thức nghiệm.
  • Tính toán cẩn thận để tránh sai sót.
  • Kiểm tra lại nghiệm bằng cách thay vào phương trình ban đầu.

Ứng dụng của phương trình bậc hai

Phương trình bậc hai có rất nhiều ứng dụng trong thực tế, chẳng hạn như:

  • Tính toán quỹ đạo của vật thể ném lên.
  • Xác định kích thước của các hình học.
  • Giải các bài toán kinh tế.

Bài tập luyện tập

Để củng cố kiến thức về phương trình bậc hai, bạn có thể làm thêm một số bài tập luyện tập sau:

  1. Giải phương trình: 2x2 - 5x + 3 = 0
  2. Giải phương trình: x2 - 4x + 4 = 0
  3. Giải phương trình: x2 + x + 1 = 0

Kết luận

Hy vọng rằng bài viết này đã giúp bạn hiểu rõ hơn về cách giải bài 5 trang 35 sách bài tập toán 9 - Cánh diều tập 1. Chúc bạn học tập tốt và đạt kết quả cao trong môn toán!

Tài liệu, đề thi và đáp án Toán 9