Bài 41 trang 67 Sách bài tập Toán 9 - Cánh Diều tập 1 là một bài tập quan trọng trong chương trình học Toán 9. Bài tập này yêu cầu học sinh vận dụng kiến thức đã học về hàm số bậc nhất để giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 41 trang 67 Sách bài tập Toán 9 - Cánh Diều tập 1, giúp các em học sinh nắm vững kiến thức và tự tin làm bài tập.
Tìm x, biết: a) (frac{1}{2}sqrt x - frac{3}{2}sqrt {9x} + 24sqrt {frac{x}{{64}}} = - 17) với (x ge 0) b) (sqrt {frac{x}{5}} = 4) với (x ge 0) c) (sqrt {25{x^2}} = 10) d) (sqrt {{{left( {2x - 1} right)}^2}} = 3) e) (2 - sqrt[3]{{5 - x}} = 0)
Đề bài
Tìm x, biết:
a) \(\frac{1}{2}\sqrt x - \frac{3}{2}\sqrt {9x} + 24\sqrt {\frac{x}{{64}}} = - 17\) với \(x \ge 0\)
b) \(\sqrt {\frac{x}{5}} = 4\) với \(x \ge 0\)
c) \(\sqrt {25{x^2}} = 10\)
d) \(\sqrt {{{\left( {2x - 1} \right)}^2}} = 3\)
e) \(2 - \sqrt[3]{{5 - x}} = 0\)
Phương pháp giải - Xem chi tiết
Bình phương (lập phương) 2 vế.
Lời giải chi tiết
a) \(\frac{1}{2}\sqrt x - \frac{3}{2}\sqrt {9x} + 24\sqrt {\frac{x}{{64}}} = - 17\)
\(\begin{array}{l}\frac{1}{2}\sqrt x - \frac{3}{2}\sqrt {9x} + 24\sqrt {\frac{x}{{64}}} = - 17\\\frac{1}{2}\sqrt x - \frac{9}{2}\sqrt x + 3\sqrt x = - 17\\\sqrt x \left( {\frac{1}{2} - \frac{9}{2} + 3} \right) = - 17\\\sqrt x \left( {\frac{1}{2} - \frac{9}{2} + 3} \right) = - 17\\ - \sqrt x = - 17\\\sqrt x = 17\\x = 289(tm)\end{array}\)
Vậy \(x = 289\).
b) \(\sqrt {\frac{x}{5}} = 4\)
\(\begin{array}{l}\sqrt {\frac{x}{5}} = 4\\\frac{x}{5} = 16\\x = 80(tm)\end{array}\)
Vậy \(x = 80\).
c) \(\sqrt {25{x^2}} = 10\)
\(\begin{array}{l}\sqrt {25{x^2}} = 10\\25{x^2} = 100\\{x^2} = 4\end{array}\)
\(x = 2\) hoặc \(x = - 2\)
Vậy \(x = 2\);\(x = - 2\)
d) \(\sqrt {{{\left( {2x - 1} \right)}^2}} = 3\)
\({\left( {2x - 1} \right)^2} = 9\)
\(2x - 1 = 3\) hoặc \(2x - 1 = - 3\)
\(2x = 4\) hoặc \(2x = - 2\)
\(x = 2\) hoặc \(x = - 1\)
Vậy \(x = 2\);\(x = - 1\)
e) \(2 - \sqrt[3]{{5 - x}} = 0\)
\(\begin{array}{l}\sqrt[3]{{5 - x}} = 2\\5 - x = 8\\x = - 3\end{array}\)
Vậy \(x = - 3.\)
Bài 41 trang 67 Sách bài tập Toán 9 - Cánh Diều tập 1 thuộc chương Hàm số bậc nhất. Để giải bài tập này, học sinh cần nắm vững các kiến thức sau:
Phương pháp giải bài tập hàm số bậc nhất thường bao gồm các bước sau:
Đề bài: (Nội dung đề bài sẽ được chèn vào đây - ví dụ: Cho hàm số y = 2x - 3. Tìm x khi y = 5.)
Lời giải:
Để tìm x khi y = 5, ta thay y = 5 vào phương trình hàm số y = 2x - 3:
5 = 2x - 3
Chuyển -3 sang vế trái, ta được:
5 + 3 = 2x
8 = 2x
Chia cả hai vế cho 2, ta được:
x = 4
Vậy, khi y = 5 thì x = 4.
Ngoài bài 41, còn rất nhiều bài tập tương tự về hàm số bậc nhất. Dưới đây là một số dạng bài tập thường gặp và cách giải:
Để củng cố kiến thức về hàm số bậc nhất, các em học sinh có thể luyện tập thêm các bài tập sau:
Bài 41 trang 67 Sách bài tập Toán 9 - Cánh Diều tập 1 là một bài tập quan trọng giúp học sinh hiểu rõ hơn về hàm số bậc nhất và ứng dụng của nó. Hy vọng với lời giải chi tiết và các hướng dẫn trên, các em học sinh sẽ tự tin hơn khi giải các bài tập tương tự.