Bài 43 trang 122 sách bài tập Toán 9 Cánh diều tập 1 là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng giải bài toán thực tế liên quan đến hàm số bậc nhất. Bài tập này yêu cầu học sinh vận dụng kiến thức đã học để giải quyết các vấn đề cụ thể.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 43 trang 122 SBT Toán 9 Cánh diều tập 1, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.
Cho hình chữ nhật ABCD với AB = 10cm. Vẽ hai nửa đường tròn tâm O đường kính AB và tâm O’ đường kính CD cắt nhau tại P, Q. Biết rằng đường tròn tâm H đường kính PQ tiếp xúc với AB và CD (Hình 47). Tính diện tích phần chung của hai nửa đường tròn (O), (O’).
Đề bài
Cho hình chữ nhật ABCD với AB = 10cm. Vẽ hai nửa đường tròn tâm O đường kính AB và tâm O’ đường kính CD cắt nhau tại P, Q. Biết rằng đường tròn tâm H đường kính PQ tiếp xúc với AB và CD (Hình 47). Tính diện tích phần chung của hai nửa đường tròn (O), (O’).
Phương pháp giải - Xem chi tiết
Bước 1: Chứng minh OPO’Q là hình vuông và cạnh hình vuông.
Bước 2: Diện tích cần tìm = diện tích phần tạo bởi dây PQ và cung nhỏ PQ của (O) + diện tích phần tạo bởi dây PQ và cung nhỏ PQ của (O’).
Trong đó:
Diện tích phần tạo bởi dây PQ và cung nhỏ PQ của (O) = diện tích quạt tròn OPQ – diện tích tam giác OPQ.
Diện tích phần tạo bởi dây PQ và cung nhỏ PQ của (O’) = diện tích quạt tròn O’PQ – diện tích tam giác O’PQ.
Lời giải chi tiết
Ta có: O là tâm đường tròn đường kính AB nên \(OA = OB = OP = OQ = \frac{{AB}}{2} = \frac{{10}}{2} = 5\)cm.
Ta lại có: O’ là tâm đường tròn đường kính CD nên \(O'C = O'D = O'P = O'Q = \frac{{CD}}{2}\)
Mà \(AB = CD\) (do ABCD là hình chữ nhật), suy ra \(OP = OQ = O'P = O'Q\).
Có: AB, CD tiếp xúc với (H), \(OH \bot AB\)tại O tại O’, do đó O và O’ là tiếp điểm của 2 tiếp tuyến AB và CD của (H), hay \(O \in (H),O' \in (H)\).
Diện tích tam giác OPQ là:
\(\frac{1}{2}OP.OQ = \frac{1}{2}5.5 = \frac{{25}}{2}\)(cm2)
Diện tích hình quạt tròn OPQ của (O) là
\(\frac{{\pi {{.5}^2}.90}}{{360}} = \frac{{25\pi }}{4}\)(cm2)
Diện tích hình tạo bởi dây PQ và cung nhỏ PQ của (O) là:
\(\frac{{25\pi }}{4} - \frac{{25}}{2} = \frac{{25}}{4}\left( {\pi - 2} \right)\)(cm2)
Diện tích tam giác O’PQ là:
\(\frac{1}{2}OP.OQ = \frac{1}{2}5.5 = \frac{{25}}{2}\)(cm2)
Diện tích hình quạt tròn O’PQ của (O’) là
\(\frac{{\pi {{.5}^2}.90}}{{360}} = \frac{{25\pi }}{4}\) (cm2)
Diện tích hình tạo bởi dây PQ và cung nhỏ PQ của (O’) là:
\(\frac{{25\pi }}{4} - \frac{{25}}{2} = \frac{{25}}{4}\left( {\pi - 2} \right)\) (cm2)
Vậy diện tích phần chung của 2 nửa đường tròn (O) và (O’) là:
\(2.\frac{{25}}{4}\left( {\pi - 2} \right) = \frac{{25}}{2}\left( {\pi - 2} \right)\) (cm2)
Bài 43 trang 122 sách bài tập Toán 9 Cánh diều tập 1 thuộc chương Hàm số bậc nhất. Để giải bài tập này, học sinh cần nắm vững các kiến thức sau:
Phương pháp giải bài tập thường bao gồm các bước sau:
Nội dung bài tập: (Giả sử nội dung bài tập là tìm giá trị của m để ba điểm A, B, C thẳng hàng, với A(1; 2), B(2; 4), C(m; m2)).
Lời giải:
Để ba điểm A, B, C thẳng hàng, ta có:
(4 - 2)(m - 2) = (m2 - 4)(2 - 1)
2(m - 2) = m2 - 4
2m - 4 = m2 - 4
m2 - 2m = 0
m(m - 2) = 0
Vậy m = 0 hoặc m = 2.
Kết luận: Với m = 0 hoặc m = 2, ba điểm A, B, C thẳng hàng.
Ngoài bài 43, sách bài tập Toán 9 Cánh diều tập 1 còn nhiều bài tập tương tự về hàm số bậc nhất. Các bài tập này thường yêu cầu học sinh:
Để giải các bài tập này, học sinh cần nắm vững lý thuyết, phương pháp giải và luyện tập thường xuyên.
Để củng cố kiến thức về hàm số bậc nhất, các em học sinh có thể tham khảo thêm các bài tập sau:
Bài 43 trang 122 sách bài tập Toán 9 Cánh diều tập 1 là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng giải bài toán về hàm số bậc nhất. Hy vọng với lời giải chi tiết và các hướng dẫn trên, các em học sinh sẽ hiểu rõ phương pháp giải và tự tin làm bài tập.