Logo Header
  1. Môn Toán
  2. Giải bài 25 trang 89 sách bài tập toán 9 - Cánh diều tập 1

Giải bài 25 trang 89 sách bài tập toán 9 - Cánh diều tập 1

Từ một đài quan sát, một người đặt mắt tại vị trí B. Người đó nhìn thấy một chiếc ô tô ở vị trí C theo phương BC tạo với phương nằm ngang Bx một góc là \(\widehat {CBx} = 23^\circ \)với Bx // AC. Khi đó, khoảng cách giữa ô tô và chân đài quan sát là AC = 1284 m. Nếu ô tô từ vị trí C tiếp tục đi về phía chân đài quan sát với tốc độ 60 km/h thì sau 1 phút, người đó nhìn thấy ô tô ở vị trí D với góc \(\widehat {DBx} = \alpha ^\circ \) (Hình 25).a) Tính chiều cao của đài quan sát (làm tròn kết quả đ

Đề bài

Từ một đài quan sát, một người đặt mắt tại vị trí B. Người đó nhìn thấy một chiếc ô tô ở vị trí C theo phương BC tạo với phương nằm ngang Bx một góc là \(\widehat {CBx} = 23^\circ \)với Bx // AC. Khi đó, khoảng cách giữa ô tô và chân đài quan sát là AC = 1284 m. Nếu ô tô từ vị trí C tiếp tục đi về phía chân đài quan sát với tốc độ 60 km/h thì sau 1 phút, người đó nhìn thấy ô tô ở vị trí D với góc \(\widehat {DBx} = \alpha ^\circ \) (Hình 25).

Giải bài 25 trang 89 sách bài tập toán 9 - Cánh diều tập 1 1

a) Tính chiều cao của đài quan sát (làm tròn kết quả đến hàng đơn vị của mét), biết độ cao từ tầm mắt của người đó đến đỉnh đài quan sát là 3 m.

b) Tính số đo góc α (làm tròn kết quả đến hàng đơn vị của phút).

c) Tính khoảng cách từ mắt người quan sát đến vị trí D (làm tròn kết quả đến hàng đơn vị của mét).

Phương pháp giải - Xem chi tiếtGiải bài 25 trang 89 sách bài tập toán 9 - Cánh diều tập 1 2

a) Bước 1: Áp dụng tỉ số lượng giác trong tam giác vuông ABC để tính AB.

Bước 2: Chiều cao của đài quan sát là AB + 3

b) Bước 1: Tính CD (công thức s = vt), sau đó tính \(AD = AC - CD\).

Bước 2: Áp dụng tỉ số lượng giác trong tam giác vuông ABD để tính góc BAD.

Bước 3: Tính \(\widehat {DBC}\), từ đó tính được α.

c) Áp dụng tỉ số lượng giác trong tam giác vuông ABD để tính BD.

Lời giải chi tiết

a) Do Bx // AC nên \(\widehat {ACB} = \widehat {CBx} = 23^\circ \) (cặp góc so le trong).

Xét tam giác ABC vuông tại A ta có: \(\tan \widehat {ACB} = \frac{{AB}}{{AC}}\)

hay \(AB = AC.\tan \widehat {ACB} = 1284.\tan 23^\circ \approx 545\)m.

Vậy chiều cao của đài quan sát khoảng \(3 + 545 = 548\)m.

b) Đổi 60km/h = 1000m/phút.

Quãng đường CD là \(CD = 1000.1 = 1000\)m.

Suy ra \(AD = AC - CD = 1284 - 1000 = 284\)m.

Xét tam giác ABD vuông tại A ta có: \(\tan \widehat {ABD} = \frac{{AD}}{{AB}} \approx \frac{{284}}{{545}}\) suy ra \(\widehat {ABD} \approx 27^\circ 31'\).

Do tam giác ABC vuông tại A nên \(\widehat C + \widehat {CBA} = 90^\circ \) hay \(\widehat C + \widehat {ABD} + \widehat {DBC} = 90^\circ \)

Do đó \(\widehat {DBC} = 90^\circ - \widehat C - \widehat {ABD} \approx 90^\circ - 23^\circ - 27^\circ 31' = 39^\circ 29'\)

Vậy \(\widehat {DBx} = \alpha ^\circ = \widehat {CBx} + \widehat {DBC} \approx 23^\circ + 39^\circ 29' = 69^\circ 29'\)

c) Xét tam giác ABD vuông tại A ta có: \(\cos \widehat {ABD} = \frac{{AD}}{{BD}}\) 

suy ra \(BD = \frac{{AD}}{{\cos \widehat {ABD}}} \approx \frac{{545}}{{\cos 27^\circ 31'}} \approx 615\)m.

Làm chủ Toán 9, tự tin vào phòng thi! Đừng bỏ lỡ Giải bài 25 trang 89 sách bài tập toán 9 - Cánh diều tập 1 đặc sắc thuộc chuyên mục giải bài tập toán 9 trên nền tảng toán học. Với bộ bài tập lý thuyết toán thcs được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình sách giáo khoa mới nhất, đây chính là công cụ đắc lực giúp các em tối ưu hóa ôn luyện, củng cố kiến thức vững chắc và thuần thục mọi dạng bài thi khó nhằn. Phương pháp học trực quan, khoa học sẽ mang lại hiệu quả vượt trội, giúp con bạn chinh phục mọi thử thách một cách dễ dàng.

Tài liệu, đề thi và đáp án Toán 9