Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập toán 9. Bài viết này sẽ hướng dẫn bạn giải bài 8 trang 103 sách bài tập toán 9 - Cánh diều tập 1 một cách nhanh chóng và hiệu quả.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, đặc biệt là với những bài tập đòi hỏi sự tư duy và vận dụng kiến thức. Vì vậy, chúng tôi luôn cố gắng cung cấp những lời giải rõ ràng, chi tiết, kèm theo các giải thích cụ thể để bạn có thể hiểu rõ bản chất của bài toán.
Cho đường tròn tâm O bán kính OA và đường tròn tâm O' đường kính OA. a) Xét vị trí tương đối của hai đường tròn (O) và (O'). b) Dây AD của đường tròn (O) cắt đường tròn (O’) tại C. Chứng minh AC = CD.
Đề bài
Cho đường tròn tâm O bán kính OA và đường tròn tâm O' đường kính OA.
a) Xét vị trí tương đối của hai đường tròn (O) và (O').
b) Dây AD của đường tròn (O) cắt đường tròn (O’) tại C. Chứng minh AC = CD.
Phương pháp giải - Xem chi tiết
a) Chỉ ra \(OO' = OA - O'A\)
b) Bước 1: Chứng minh \(OC \bot DC\) (do \(O'C = \frac{1}{2}AO\) nên tam giác OAC vuông tại C).
Bước 2: OC là đường cao đồng thời là đường trug tuyến trong tam giác cân OAD.
Lời giải chi tiết
a) Vì đường tròn tâm O' đường kính OA nên \(OO' = O'A = \frac{{OA}}{2}\)
Do đó \(OO' = OA - O'A\) nên 2 đường tròn (O) và (O) tiếp xúc trong tại A.
b) Xét tam giác OAC có: \(CO' = OO' = AO'( = r)\) suy ra \(O'C = \frac{1}{2}AO\) nên tam giác OAC vuông tại C. Do đó \(OC \bot DC\).
Xét tam giác DOA cân tại O (\(OD = OA = R\)) có đường cao OC (do \(OC \bot DC\)) đồng thời là đường trung tuyến nên CD = CA.
Bài 8 trang 103 sách bài tập toán 9 - Cánh diều tập 1 thuộc chương trình học toán 9, tập trung vào việc ôn tập và củng cố kiến thức về hàm số bậc nhất. Bài tập này yêu cầu học sinh vận dụng các kiến thức đã học để giải quyết các bài toán thực tế liên quan đến hàm số.
Bài 8 bao gồm các dạng bài tập sau:
Để giúp bạn giải bài 8 trang 103 sách bài tập toán 9 - Cánh diều tập 1 một cách dễ dàng, chúng tôi sẽ cung cấp hướng dẫn giải chi tiết cho từng phần của bài tập.
Ví dụ: Cho đường thẳng đi qua hai điểm A(1; 2) và B(-1; 0). Hãy xác định hàm số bậc nhất có dạng y = ax + b đi qua hai điểm này.
Giải:
Ví dụ: Tìm giao điểm của hai đường thẳng y = 2x - 1 và y = -x + 2.
Giải:
Để tìm giao điểm của hai đường thẳng, ta giải hệ phương trình:
Thay phương trình (2) vào phương trình (1), ta được: -x + 2 = 2x - 1 => 3x = 3 => x = 1
Thay x = 1 vào phương trình (2), ta được: y = -1 + 2 = 1
Vậy giao điểm của hai đường thẳng là: (1; 1)
Ví dụ: Một ô tô xuất phát từ A lúc 8 giờ với vận tốc 60 km/h. Đến 10 giờ, ô tô cách B còn 80 km. Tính quãng đường AB.
Giải:
Thời gian ô tô đi từ A đến lúc 10 giờ là: 10 - 8 = 2 giờ
Quãng đường ô tô đi được trong 2 giờ là: 60 * 2 = 120 km
Quãng đường AB là: 120 + 80 = 200 km
Bài 8 trang 103 sách bài tập toán 9 - Cánh diều tập 1 là một bài tập quan trọng giúp học sinh củng cố kiến thức về hàm số bậc nhất và rèn luyện kỹ năng giải toán. Hy vọng với hướng dẫn chi tiết này, bạn sẽ giải bài tập một cách dễ dàng và hiệu quả. Chúc bạn học tốt!