Bài 26 trang 71 Sách bài tập Toán 9 - Cánh Diều tập 2 là một bài tập quan trọng trong chương trình học Toán 9. Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số bậc nhất và hàm số bậc hai để giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 26 trang 71 Sách bài tập Toán 9 - Cánh Diều tập 2, giúp các em học sinh nắm vững kiến thức và tự tin làm bài tập.
a) Cho phương trình ( - {x^2} + 5kx + 4 = 0.) Tìm các giá trị k để phương trình có hai nghiệm ({x_1};{x_2}) thoả mãn điều kiện (x_1^2 + x_2^2 + 6{x_1}{x_2} = 9.) b) Cho phương trình (k{x^2} - 6left( {k - 1} right)x + 9left( {k - 3} right) = 0left( {k ne 0} right).)Tìm các giá trị k để phương trình có hai nghiệm ({x_1};{x_2}) thoả mãn điều kiện ({x_1} + {x_2} - {x_1}{x_2} = 0.)
Đề bài
a) Cho phương trình \( - {x^2} + 5kx + 4 = 0.\) Tìm các giá trị k để phương trình có hai nghiệm \({x_1};{x_2}\) thoả mãn điều kiện \(x_1^2 + x_2^2 + 6{x_1}{x_2} = 9.\)
b) Cho phương trình \(k{x^2} - 6\left( {k - 1} \right)x + 9\left( {k - 3} \right) = 0\left( {k \ne 0} \right).\)Tìm các giá trị k để phương trình có hai nghiệm \({x_1};{x_2}\) thoả mãn điều kiện \({x_1} + {x_2} - {x_1}{x_2} = 0.\)
Phương pháp giải - Xem chi tiết
Bước 1: Tìm k để\(\Delta \ge 0\) hoặc \(\Delta ' \ge 0\).
Bước 2: Áp dụng định lý Viète để tính \({x_1} + {x_2};{x_1}{x_2}\).
Bước 3: Biến đổi đẳng thức đã cho về dạng tổng và tích của \({x_1};{x_2}\) rồi thay vào đẳng thức để tìm k.
Lời giải chi tiết
Phương trình có các hệ số \(a = - 1;b = 5k;c = 4\).
Ta có \(\Delta = {\left( {5k} \right)^2} - 4.\left( { - 1} \right).4 = 25{k^2} + 16 > 0\) với mọi \(k \in \mathbb{R}\).
Do \(\Delta > 0\) nên phương trình có 2 nghiệm phân biệt, áp dụng định lý Viète ta có:
\({x_1} + {x_2} = 5k;{x_1}.{x_2} = - 4.\)
Ta lại có: \(x_1^2 + x_2^2 + 6{x_1}{x_2} = 9\)
suy ra \({\left( {x_1^{} + x_2^{}} \right)^2} + 4{x_1}{x_2} = 9\)
hay \({\left( {5k} \right)^2} + 4.\left( { - 4} \right) = 9\)
Do đó \(25{k^2} - 16 = 9\), suy ra \(k = 1;k = - 1\).
Vậy \(k = 1;k = - 1\) là các giá trị cần tìm.
b) Phương trình có các hệ số \(a = k;b = - 6\left( {k - 1} \right);c = 9\left( {k - 3} \right).\)
Do đó \(b' = \frac{b}{2} = - 3\left( {k - 1} \right)\).
Ta có \(\Delta ' = {\left( { - 3\left( {k - 1} \right)} \right)^2} - k.9\left( {k - 3} \right) = 9k + 9\).
Để phương trình có 2 nghiệm thì \(\Delta ' \ge 0\) hay \(9k + 9 \ge 0\), suy ra \(k \ge - 1\) và \(k \ne 0\).
Áp dụng định lý Viète ta có:
\({x_1} + {x_2} = \frac{{6\left( {k - 1} \right)}}{k};{x_1}.{x_2} = \frac{{9\left( {k - 3} \right)}}{k}.\)
Ta lại có: \(\frac{{6\left( {k - 1} \right)}}{k} - \frac{{9\left( {k - 3} \right)}}{k} = 0\)
suy ra \( - 3k + 21 = 0\) hay \(k = 7\) (thỏa mãn điều kiện).
Vậy \(k = 7\) là giá trị cần tìm.
Bài 26 trong sách bài tập Toán 9 - Cánh Diều tập 2 tập trung vào việc ứng dụng các kiến thức đã học về hàm số bậc nhất và hàm số bậc hai vào giải quyết các bài toán liên quan đến thực tế. Các bài toán thường yêu cầu học sinh xác định hàm số, tìm điểm thuộc đồ thị hàm số, giải phương trình và bất phương trình bậc hai, và ứng dụng hàm số để mô tả các hiện tượng thực tế.
Bài 26 bao gồm các dạng bài tập sau:
Dưới đây là lời giải chi tiết cho từng bài tập trong bài 26 trang 71 Sách bài tập Toán 9 - Cánh Diều tập 2:
Đề bài: (Giả định đề bài cụ thể ở đây)
Lời giải: (Giải thích chi tiết từng bước giải bài tập)
Đề bài: (Giả định đề bài cụ thể ở đây)
Lời giải: (Giải thích chi tiết từng bước giải bài tập)
Đề bài: (Giả định đề bài cụ thể ở đây)
Lời giải: (Giải thích chi tiết từng bước giải bài tập)
Để giải tốt các bài tập về hàm số bậc nhất và bậc hai, học sinh cần:
Hàm số có rất nhiều ứng dụng trong thực tế, ví dụ như:
Bài 26 trang 71 Sách bài tập Toán 9 - Cánh Diều tập 2 là một bài tập quan trọng giúp học sinh củng cố kiến thức về hàm số bậc nhất và bậc hai. Hy vọng với lời giải chi tiết và các mẹo giải bài tập mà Giaitoan.edu.vn cung cấp, các em học sinh sẽ học tập hiệu quả và đạt kết quả tốt trong môn Toán.