Bài 45 trang 68 sách bài tập Toán 9 - Cánh Diều tập 1 là một bài tập quan trọng trong chương trình học. Bài tập này yêu cầu học sinh vận dụng kiến thức đã học về hàm số bậc nhất để giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 45 trang 68 sách bài tập Toán 9 - Cánh Diều tập 1, giúp các em học sinh nắm vững kiến thức và tự tin làm bài tập.
So sánh: a) \(5\sqrt 5 \) và \(4\sqrt 3 \) b) \(\sqrt {36 + 16} \) và \(\sqrt {36} + \sqrt {16} \) c) \(\frac{1}{{\sqrt {60} }}\) và \(2\sqrt {\frac{1}{{15}}} \) d) \(\sqrt 6 - \sqrt 2 \) và 1
Đề bài
So sánh:
a) \(5\sqrt 5 \) và \(4\sqrt 3 \)
b) \(\sqrt {36 + 16} \) và \(\sqrt {36} + \sqrt {16} \)
c) \(\frac{1}{{\sqrt {60} }}\) và \(2\sqrt {\frac{1}{{15}}} \)
d) \(\sqrt 6 - \sqrt 2 \) và 1
Phương pháp giải - Xem chi tiết
a) Đưa hết các thừa số vào trong căn.
b) Tính kết quả từng hạng tử.
c) Đưa hết các thừa số vào trong căn.
d) Xét hiệu \({\left( {\sqrt 6 - \sqrt 2 } \right)^2} - 1\).
Lời giải chi tiết
a) Ta có: \(5\sqrt 5 = \sqrt {{5^2}.5} = \sqrt {125} \) và \(4\sqrt 3 = \sqrt {{4^2}.3} = \sqrt {48} \).
Do \(\sqrt {125} > \sqrt {48} \) nên \(5\sqrt 5 > 4\sqrt 3 \).
b) Ta có \(\sqrt {36 + 16} = \sqrt {52} \) và \(\sqrt {36} + \sqrt {16} = 6 + 4 = 10 = \sqrt {100} \)
Do \(\sqrt {52} < \sqrt {100} \) nên \(\sqrt {36 + 16} < \sqrt {36} + \sqrt {16} \).
c) Ta có \(\frac{1}{{\sqrt {60} }} = \sqrt {\frac{1}{{60}}} \) và \(2\sqrt {\frac{1}{{15}}} = \sqrt {{2^2}.\frac{1}{{15}}} = \sqrt {\frac{4}{{15}}} \)
Do \(\frac{1}{{60}} < \frac{4}{{15}}\) nên \(\sqrt {\frac{1}{{60}}} < \sqrt {\frac{4}{{15}}} \) hay \(\frac{1}{{\sqrt {60} }} < 2\sqrt {\frac{1}{{15}}} \).
d) Xét hiệu
\({\left( {\sqrt 6 - \sqrt 2 } \right)^2} - 1\\ = 6 - 2\sqrt {12} + 2 - 1\\ = 7 - 2\sqrt {12} \\ = \sqrt {49} - \sqrt {48} > 0\)
Suy ra \({\left( {\sqrt 6 - \sqrt 2 } \right)^2} > 1\) do đó \(\sqrt 6 - \sqrt 2 > 1\).
Bài 45 trang 68 sách bài tập Toán 9 - Cánh Diều tập 1 thuộc chương Hàm số bậc nhất. Để giải bài tập này, học sinh cần nắm vững các kiến thức sau:
Bài tập 45 thường bao gồm các dạng bài sau:
Để giúp các em học sinh hiểu rõ hơn về cách giải bài tập này, chúng ta sẽ đi vào giải chi tiết từng câu hỏi trong bài tập 45 trang 68 sách bài tập Toán 9 - Cánh Diều tập 1.
Cho hàm số y = 2x - 3. Tìm giá trị của y khi x = 1.
Giải:
Thay x = 1 vào hàm số y = 2x - 3, ta được:
y = 2 * 1 - 3 = -1
Vậy, khi x = 1 thì y = -1.
Vẽ đồ thị hàm số y = -x + 2.
Giải:
Để vẽ đồ thị hàm số y = -x + 2, ta cần xác định hai điểm thuộc đồ thị. Ví dụ, ta có thể chọn x = 0 và x = 2.
Khi x = 0, y = -0 + 2 = 2. Vậy, điểm A(0; 2) thuộc đồ thị.
Khi x = 2, y = -2 + 2 = 0. Vậy, điểm B(2; 0) thuộc đồ thị.
Nối hai điểm A và B, ta được đồ thị hàm số y = -x + 2.
Để giải các bài tập về hàm số bậc nhất một cách hiệu quả, các em học sinh nên:
Để củng cố kiến thức về hàm số bậc nhất, các em học sinh có thể làm thêm các bài tập sau:
Bài 45 trang 68 sách bài tập Toán 9 - Cánh Diều tập 1 là một bài tập quan trọng giúp các em học sinh củng cố kiến thức về hàm số bậc nhất. Hy vọng với lời giải chi tiết và các mẹo giải bài tập mà Giaitoan.edu.vn đã cung cấp, các em sẽ tự tin hơn khi làm bài tập và đạt kết quả tốt trong môn Toán.