Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập toán 9. Bài viết này sẽ hướng dẫn bạn giải bài 3 trang 57 sách bài tập toán 9 - Cánh diều tập 2 một cách nhanh chóng và hiệu quả.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, chúng tôi đã biên soạn lời giải bài 3 trang 57 một cách cẩn thận, kèm theo các giải thích chi tiết để bạn có thể nắm vững kiến thức và áp dụng vào các bài tập tương tự.
Galileo Galilei là người phát hiện ra quãng đường chuyển động của vật rơi tự do tỉ lệ thuận với bình phương của thời gian. Liên hệ giữa quãng đường chuyển động s (mét) và thời gian chuyển động x (giây) được cho bởi hàm số (s = 4,9{x^2}). Người ta thả một vật nặng từ độ cao 56 m trên tháp nghiêng Pi-sa xuống đất (sức cản của không khí không đáng kể). a) Hỏi sau thời gian 2,5 giây vật nặng còn cách mặt đất bao nhiêu mét? b) Khi vật nặng còn cách mặt đất 17,584 m thì nó đã rơi thời gian bao nhi
Đề bài
Galileo Galilei là người phát hiện ra quãng đường chuyển động của vật rơi tự do tỉ lệ thuận với bình phương của thời gian. Liên hệ giữa quãng đường chuyển động s (mét) và thời gian chuyển động x (giây) được cho bởi hàm số \(s = 4,9{x^2}\). Người ta thả một vật nặng từ độ cao 56 m trên tháp nghiêng Pi-sa xuống đất (sức cản của không khí không đáng kể).
a) Hỏi sau thời gian 2,5 giây vật nặng còn cách mặt đất bao nhiêu mét?
b) Khi vật nặng còn cách mặt đất 17,584 m thì nó đã rơi thời gian bao nhiêu giây?
Phương pháp giải - Xem chi tiết
a) Thay \(x = 2,5\) vào \(s = 4,9{x^2}\).
b) Bước 1: Tìm quãng đường s vật nặng đã đi được.
Bước 2: Thay s vừa tìm được vào \(s = 4,9{x^2}\) để tìm x.
Lời giải chi tiết
a)Trong 2,5 giây, vật nặng rơi được quãng đường là: \(s = {4,9.2,5^2} = 30,625m\)
Khi đó, vật nặng còn cách mặt đất: \(56 - 30,625 = 25,375m\).
b) Quãng đường vật nặng đi được khi cách mặt đất 17,584 m là: \(56 - 17,584 = 38,416m\)
Ta có \(s = 4,9{x^2}\) hay \(x = \sqrt {\frac{s}{{4,9}}} = \sqrt {\frac{{38,416}}{{4,9}}} = 2,8\)
Vậy vật nặng đi hết thời gian là: 2,8 giây.
Bài 3 trang 57 sách bài tập toán 9 - Cánh diều tập 2 thuộc chương trình học toán 9, tập trung vào việc vận dụng các kiến thức về hàm số bậc nhất và hàm số bậc hai để giải quyết các bài toán thực tế. Để giải quyết bài toán này một cách hiệu quả, chúng ta cần nắm vững các khái niệm cơ bản sau:
Bài 3 trang 57 thường yêu cầu học sinh xác định hàm số, vẽ đồ thị hàm số, tìm giao điểm của đồ thị với các đường thẳng hoặc parabol khác, hoặc giải các bài toán ứng dụng liên quan đến hàm số. Để giải bài toán này, chúng ta có thể thực hiện theo các bước sau:
Đề bài: Cho hàm số y = 2x + 1. Tìm giá trị của x sao cho y = 5.
Giải:
Để tìm giá trị của x sao cho y = 5, ta thay y = 5 vào phương trình hàm số:
5 = 2x + 1
Giải phương trình, ta được:
2x = 4
x = 2
Vậy, giá trị của x cần tìm là x = 2.
Ngoài dạng bài tập tìm giá trị của x khi biết y, bài 3 trang 57 còn có thể xuất hiện các dạng bài tập sau:
Để giải bài tập về hàm số một cách hiệu quả, bạn cần lưu ý những điều sau:
Bài 3 trang 57 sách bài tập toán 9 - Cánh diều tập 2 là một bài tập quan trọng giúp bạn củng cố kiến thức về hàm số. Hy vọng rằng với hướng dẫn chi tiết và ví dụ minh họa trên, bạn có thể giải bài tập này một cách dễ dàng và hiệu quả. Chúc bạn học tốt!