Logo Header
  1. Môn Toán
  2. Giải bài 31 trang 65 sách bài tập toán 9 - Cánh diều tập 1

Giải bài 31 trang 65 sách bài tập toán 9 - Cánh diều tập 1

Giải bài 31 trang 65 Sách bài tập Toán 9 - Cánh Diều tập 1

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 9. Bài viết này sẽ hướng dẫn bạn cách giải bài 31 trang 65 sách bài tập Toán 9 - Cánh Diều tập 1 một cách nhanh chóng và hiệu quả.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, đặc biệt là với những bài tập đòi hỏi sự tư duy và vận dụng kiến thức. Vì vậy, chúng tôi đã biên soạn lời giải chi tiết, kèm theo các bước giải cụ thể để giúp bạn nắm vững kiến thức và tự tin giải các bài tập tương tự.

Áp dụng quy tắc về căn thức bậc hai của một bình phương, hãy rút gọn biểu thức: a) \(\sqrt {25 - 10 + {x^2}} \) với \(x \le 5.\) b) \(\sqrt {{{\left( {9 + 12x + 4{x^2}} \right)}^2}} \) c) \(\sqrt {{{\left( {3x + 1} \right)}^6}} \) với \(x \ge \frac{{ - 1}}{3}\) d) \(\sqrt {\frac{{49{x^2}{{\left( {x + 5} \right)}^2}}}{{16}}} \) với \(x \ge 0\)

Đề bài

Áp dụng quy tắc về căn thức bậc hai của một bình phương, hãy rút gọn biểu thức:

a) \(\sqrt {25 - 10 + {x^2}} \) với \(x \le 5.\)

b) \(\sqrt {{{\left( {9 + 12x + 4{x^2}} \right)}^2}} \)

c) \(\sqrt {{{\left( {3x + 1} \right)}^6}} \) với \(x \ge \frac{{ - 1}}{3}\)

d) \(\sqrt {\frac{{49{x^2}{{\left( {x + 5} \right)}^2}}}{{16}}} \) với \(x \ge 0\)

Phương pháp giải - Xem chi tiếtGiải bài 31 trang 65 sách bài tập toán 9 - Cánh diều tập 1 1

Áp dụng \(\sqrt {{A^2}} = \left| A \right|.\)

Lời giải chi tiết

a) \(\sqrt {25 - 10 + {x^2}} \)

\(= \sqrt {{{\left( {5 - x} \right)}^2}} = \left| {5 - x} \right| = 5 - x\) (do \(x \le 5\)).

b) \(\sqrt {{{\left( {9 + 12x + 4{x^2}} \right)}^2}}\)

\(= \sqrt {{{\left[ {{{\left( {3 + 2x} \right)}^2}} \right]}^2}} = \left| {{{\left( {3 + 2x} \right)}^2}} \right| = {\left( {3 + 2x} \right)^2}\).

c) \(\sqrt {{{\left( {3x + 1} \right)}^6}} \)

\(= \sqrt {{{\left[ {{{\left( {3x + 1} \right)}^3}} \right]}^2}} = \left| {{{\left( {3x + 1} \right)}^3}} \right| = {\left( {3x + 1} \right)^3}\) (do \(x \ge \frac{{ - 1}}{3}\)).

d) \(\sqrt {\frac{{49{x^2}{{\left( {x + 5} \right)}^2}}}{{16}}} \)

\(= \frac{7}{4}\sqrt {{{\left[ {x\left( {x + 5} \right)} \right]}^2}} = \frac{7}{4}.\left| {x\left( {x + 5} \right)} \right| = \frac{7}{4}.x\left( {x + 5} \right)\) (do \(x \ge 0\)).

Làm chủ Toán 9, tự tin vào phòng thi! Đừng bỏ lỡ Giải bài 31 trang 65 sách bài tập toán 9 - Cánh diều tập 1 đặc sắc thuộc chuyên mục sách bài tập toán 9 trên nền tảng tài liệu toán. Với bộ bài tập lý thuyết toán thcs được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình sách giáo khoa mới nhất, đây chính là công cụ đắc lực giúp các em tối ưu hóa ôn luyện, củng cố kiến thức vững chắc và thuần thục mọi dạng bài thi khó nhằn. Phương pháp học trực quan, khoa học sẽ mang lại hiệu quả vượt trội, giúp con bạn chinh phục mọi thử thách một cách dễ dàng.

Giải bài 31 trang 65 Sách bài tập Toán 9 - Cánh Diều tập 1: Tổng quan

Bài 31 trang 65 sách bài tập Toán 9 - Cánh Diều tập 1 thuộc chương trình học về hàm số bậc nhất. Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số bậc nhất để giải quyết các bài toán thực tế liên quan đến việc xác định hàm số, vẽ đồ thị hàm số và ứng dụng hàm số vào việc giải quyết các bài toán hình học.

Nội dung bài tập

Bài 31 bao gồm các câu hỏi và bài tập nhỏ, yêu cầu học sinh:

  • Xác định hệ số a của hàm số y = ax + b khi biết đồ thị của hàm số đi qua hai điểm cho trước.
  • Viết phương trình đường thẳng đi qua hai điểm cho trước.
  • Vẽ đồ thị của hàm số y = ax + b.
  • Tìm giao điểm của hai đường thẳng.
  • Giải các bài toán thực tế liên quan đến hàm số bậc nhất.

Lời giải chi tiết bài 31 trang 65

Để giúp bạn hiểu rõ hơn về cách giải bài 31, chúng tôi sẽ trình bày lời giải chi tiết cho từng câu hỏi và bài tập nhỏ:

Câu a: Xác định hệ số a của hàm số y = ax + b

Để xác định hệ số a, ta sử dụng công thức tính độ dốc của đường thẳng đi qua hai điểm (x1, y1) và (x2, y2):

a = (y2 - y1) / (x2 - x1)

Thay các giá trị x1, y1, x2, y2 vào công thức, ta sẽ tìm được giá trị của a.

Câu b: Viết phương trình đường thẳng đi qua hai điểm

Sau khi xác định được hệ số a, ta sử dụng công thức phương trình đường thẳng:

y = ax + b

Để tìm hệ số b, ta thay tọa độ của một trong hai điểm đã cho vào phương trình và giải phương trình để tìm b.

Câu c: Vẽ đồ thị của hàm số

Để vẽ đồ thị của hàm số y = ax + b, ta thực hiện các bước sau:

  1. Xác định hai điểm thuộc đồ thị hàm số.
  2. Vẽ đường thẳng đi qua hai điểm đó.

Câu d: Tìm giao điểm của hai đường thẳng

Để tìm giao điểm của hai đường thẳng y = a1x + b1 và y = a2x + b2, ta giải hệ phương trình:

a1x + b1 = a2x + b2

Nghiệm của hệ phương trình là tọa độ giao điểm của hai đường thẳng.

Mẹo giải bài tập hàm số bậc nhất

Để giải các bài tập về hàm số bậc nhất một cách hiệu quả, bạn nên:

  • Nắm vững các khái niệm cơ bản về hàm số bậc nhất, bao gồm định nghĩa, dạng tổng quát, hệ số góc, giao điểm với trục tọa độ.
  • Luyện tập thường xuyên các bài tập về hàm số bậc nhất để làm quen với các dạng bài và rèn luyện kỹ năng giải toán.
  • Sử dụng các công cụ hỗ trợ giải toán như máy tính bỏ túi, phần mềm vẽ đồ thị để kiểm tra lại kết quả.

Ứng dụng của hàm số bậc nhất trong thực tế

Hàm số bậc nhất có nhiều ứng dụng trong thực tế, ví dụ như:

  • Tính toán chi phí sản xuất.
  • Dự báo doanh thu.
  • Mô tả sự thay đổi của các đại lượng vật lý.

Kết luận

Hy vọng rằng với lời giải chi tiết và các mẹo giải bài tập mà chúng tôi đã cung cấp, bạn sẽ tự tin giải bài 31 trang 65 sách bài tập Toán 9 - Cánh Diều tập 1 và các bài tập tương tự. Chúc bạn học tập tốt!

Tài liệu, đề thi và đáp án Toán 9