Logo Header
  1. Môn Toán
  2. Giải bài 30 trang 135 sách bài tập toán 9 - Cánh diều tập 2

Giải bài 30 trang 135 sách bài tập toán 9 - Cánh diều tập 2

Giải bài 30 trang 135 Sách bài tập Toán 9 - Cánh Diều tập 2

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 9. Bài viết này sẽ hướng dẫn bạn giải bài 30 trang 135 sách bài tập Toán 9 - Cánh Diều tập 2 một cách nhanh chóng và hiệu quả.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, chúng tôi đã biên soạn lời giải bài 30 trang 135 một cách cẩn thận, kèm theo các giải thích chi tiết để giúp bạn nắm vững kiến thức.

Một món đồ chơi có dạng như Hình 26. Vỏ ngoài món đồ chơi là một hình nón (bằng nhựa trong suốt) có bán kính đường tròn đáy là (3sqrt 3 )cm và đường sinh là (6sqrt 3 )cm. Trong hình nón là hai quả cầu (bằng thuỷ tinh) to và nhỏ, bán kính của chúng lần lượt là 3 cm và 1 cm. Tính tỉ số tổng thể tích của hai quả cầu và thể tích hình nón đó.

Đề bài

Một món đồ chơi có dạng như Hình 26. Vỏ ngoài món đồ chơi là một hình nón (bằng nhựa trong suốt) có bán kính đường tròn đáy là \(3\sqrt 3 \)cm và đường sinh là \(6\sqrt 3 \)cm. Trong hình nón là hai quả cầu (bằng thuỷ tinh) to và nhỏ, bán kính của chúng lần lượt là 3 cm và 1 cm. Tính tỉ số tổng thể tích của hai quả cầu và thể tích hình nón đó.

Giải bài 30 trang 135 sách bài tập toán 9 - Cánh diều tập 2 1

Phương pháp giải - Xem chi tiếtGiải bài 30 trang 135 sách bài tập toán 9 - Cánh diều tập 2 2

Dựa vào: Thể tích của hình cầu: \(V = \frac{4}{3}\pi {R^3}\).

Lời giải chi tiết

Tổng thể tích của hai quả cầu là:

\(\frac{4}{3}\pi {.1^3} + \frac{4}{3}\pi {.3^3} = \frac{{112\pi }}{3}\) (cm3).

Ta có công thức tính độ dài đường sinh l qua chiều cao h và bán kính đáy r của hình nón là:

l2 = h2 + r2. Suy ra h2 = l2 – r2.

Khi đó, chiều cao của hình nón là:

\(\sqrt {{{\left( {6\sqrt 3 } \right)}^2} - {{\left( {3\sqrt 3 } \right)}^2}} = \sqrt {81} = 9\) (cm).

Thể tích hình nón là:

\(\frac{1}{3}.\pi .{\left( {3\sqrt 3 } \right)^2}.9 = 81\pi \) (cm3).

Tỉ số tổng thể tích của hai quả cầu và thể tích hình nón là:

\(\frac{{112\pi }}{3}:81\pi = \frac{{112}}{{243}}\)

Làm chủ Toán 9, tự tin vào phòng thi! Đừng bỏ lỡ Giải bài 30 trang 135 sách bài tập toán 9 - Cánh diều tập 2 đặc sắc thuộc chuyên mục sgk toán 9 trên nền tảng đề thi toán. Với bộ bài tập toán thcs được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình sách giáo khoa mới nhất, đây chính là công cụ đắc lực giúp các em tối ưu hóa ôn luyện, củng cố kiến thức vững chắc và thuần thục mọi dạng bài thi khó nhằn. Phương pháp học trực quan, khoa học sẽ mang lại hiệu quả vượt trội, giúp con bạn chinh phục mọi thử thách một cách dễ dàng.

Giải bài 30 trang 135 Sách bài tập Toán 9 - Cánh Diều tập 2: Hướng dẫn chi tiết

Bài 30 trang 135 sách bài tập Toán 9 - Cánh Diều tập 2 thuộc chương trình học Toán 9, tập trung vào việc ôn tập và củng cố kiến thức về hàm số bậc nhất. Bài tập này yêu cầu học sinh vận dụng các kiến thức đã học để giải quyết các bài toán thực tế liên quan đến hàm số.

Nội dung bài 30 trang 135 Sách bài tập Toán 9 - Cánh Diều tập 2

Bài 30 bao gồm các dạng bài tập sau:

  • Dạng 1: Xác định hệ số góc và tung độ gốc của hàm số bậc nhất.
  • Dạng 2: Tìm tọa độ giao điểm của hai đường thẳng.
  • Dạng 3: Giải các bài toán ứng dụng liên quan đến hàm số bậc nhất.

Giải chi tiết bài 30 trang 135 Sách bài tập Toán 9 - Cánh Diều tập 2

Để giúp bạn hiểu rõ hơn về cách giải bài 30 trang 135, chúng tôi sẽ trình bày lời giải chi tiết cho từng dạng bài tập.

Dạng 1: Xác định hệ số góc và tung độ gốc của hàm số bậc nhất

Ví dụ: Cho hàm số y = 2x - 3. Hãy xác định hệ số góc và tung độ gốc của hàm số.

Lời giải:

Hàm số y = 2x - 3 là hàm số bậc nhất có dạng y = ax + b, trong đó a là hệ số góc và b là tung độ gốc.

So sánh với hàm số đã cho, ta có a = 2 và b = -3.

Vậy, hệ số góc của hàm số là 2 và tung độ gốc là -3.

Dạng 2: Tìm tọa độ giao điểm của hai đường thẳng

Ví dụ: Tìm tọa độ giao điểm của hai đường thẳng y = x + 1 và y = -x + 3.

Lời giải:

Để tìm tọa độ giao điểm của hai đường thẳng, ta giải hệ phương trình sau:

y = x + 1

y = -x + 3

Thay y = x + 1 vào phương trình y = -x + 3, ta được:

x + 1 = -x + 3

2x = 2

x = 1

Thay x = 1 vào phương trình y = x + 1, ta được:

y = 1 + 1 = 2

Vậy, tọa độ giao điểm của hai đường thẳng là (1; 2).

Dạng 3: Giải các bài toán ứng dụng liên quan đến hàm số bậc nhất

Ví dụ: Một người đi xe máy với vận tốc 40 km/h. Hỏi sau 2 giờ người đó đi được bao nhiêu km?

Lời giải:

Gọi x là thời gian đi (giờ) và y là quãng đường đi được (km).

Ta có hàm số y = 40x.

Khi x = 2, ta có y = 40 * 2 = 80.

Vậy, sau 2 giờ người đó đi được 80 km.

Lưu ý khi giải bài 30 trang 135 Sách bài tập Toán 9 - Cánh Diều tập 2

  • Nắm vững các khái niệm về hàm số bậc nhất, hệ số góc, tung độ gốc.
  • Thực hành giải nhiều bài tập khác nhau để làm quen với các dạng bài tập.
  • Kiểm tra lại kết quả sau khi giải xong để đảm bảo tính chính xác.

Tổng kết

Bài 30 trang 135 sách bài tập Toán 9 - Cánh Diều tập 2 là một bài tập quan trọng giúp học sinh củng cố kiến thức về hàm số bậc nhất. Hy vọng với hướng dẫn chi tiết này, bạn sẽ giải bài tập một cách dễ dàng và hiệu quả. Chúc bạn học tốt!

Tài liệu, đề thi và đáp án Toán 9