Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 9. Bài viết này sẽ hướng dẫn bạn cách giải bài 27 trang 114 sách bài tập Toán 9 - Cánh Diều tập 2 một cách nhanh chóng và hiệu quả.
Chúng tôi luôn cố gắng mang đến những giải pháp tối ưu, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Cho tam giác đều ABC có các đường cao AD, BE, CF cắt nhau tại H. Gọi I, K, M theo thứ tự là trung điểm của HA, HB, HC. Chứng minh lục giác DKFIEM là lục giác đều.
Đề bài
Cho tam giác đều ABC có các đường cao AD, BE, CF cắt nhau tại H. Gọi I, K, M theo thứ tự là trung điểm của HA, HB, HC. Chứng minh lục giác DKFIEM là lục giác đều.
Phương pháp giải - Xem chi tiết
Dựa vào: Đa giác đều là đa giác có tất cả các cạnh bằng nhau và tất cả các góc bằng nhau.
Lời giải chi tiết
Vì ABC là tam giác đều và CF là đường cao nên CF cũng là đường phân giác của \(\widehat {ACB}\).
Suy ra \(\widehat {{C_1}} = \frac{1}{2}\widehat {ACB} = \frac{1}{2}{.60^o} = {30^o}\).
Tam giác HDC vuông tại D có \(\widehat {{C_1}} + \widehat {{H_1}} = {90^o}\), suy ra \(\widehat {{H_1}} = {90^o} - \widehat {{C_1}} = {90^o} - {30^o} = {60^o}\)
M là trung điểm của HC hay DM là đường trung tuyến ứng với cạnh huyền nên nên MD = MH = MC (cùng bằng một nửa cạnh huyền HC).
Do đó, tam giác DHM là tam giác đều.
Tương tự, ta cũng chứng minh được các tam giác HEM, HEI, HIF, HFK, HKD là các tam giác đều.
Từ đó suy ra lục giác DKFIEM có các góc đều bằng 2.60° = 120° và các cạnh đều bằng nhau, do đó lục giác DKFIEM là lục giác đều.
Bài 27 trang 114 sách bài tập Toán 9 - Cánh Diều tập 2 thuộc chương trình học về hàm số bậc nhất. Bài tập này thường yêu cầu học sinh vận dụng kiến thức về hàm số để giải quyết các bài toán thực tế, liên quan đến việc xác định hàm số, tìm điểm thuộc đồ thị hàm số, và ứng dụng hàm số vào các bài toán hình học.
Bài 27 thường bao gồm các dạng bài tập sau:
Để giải bài 27 trang 114 sách bài tập Toán 9 - Cánh Diều tập 2 một cách hiệu quả, bạn cần:
Bài toán: Cho hàm số y = 2x - 1. Tìm tọa độ điểm A thuộc đồ thị hàm số có hoành độ x = 3.
Giải:
Thay x = 3 vào hàm số y = 2x - 1, ta được:
y = 2 * 3 - 1 = 6 - 1 = 5
Vậy tọa độ điểm A là (3; 5).
Khi giải bài tập về hàm số bậc nhất, bạn cần chú ý:
Để củng cố kiến thức, bạn có thể làm thêm các bài tập tương tự trong sách bài tập Toán 9 - Cánh Diều tập 2, hoặc tìm kiếm trên các trang web học toán online.
Bài 27 trang 114 sách bài tập Toán 9 - Cánh Diều tập 2 là một bài tập quan trọng giúp bạn hiểu sâu hơn về hàm số bậc nhất. Hy vọng với hướng dẫn chi tiết này, bạn sẽ giải quyết bài tập một cách dễ dàng và hiệu quả. Chúc bạn học tốt!
Dạng bài | Phương pháp giải |
---|---|
Xác định hàm số | Sử dụng các điểm thuộc đồ thị, hệ số góc, giao điểm với trục tọa độ |
Tìm điểm thuộc đồ thị | Thay giá trị x vào hàm số để tìm y |
Ứng dụng vào hình học | Biểu diễn mối quan hệ giữa các đại lượng bằng hàm số |