Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 9. Bài viết này sẽ hướng dẫn bạn cách giải bài 26 trang 43 sách bài tập Toán 9 - Cánh Diều tập 1 một cách nhanh chóng và hiệu quả.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, chúng tôi đã biên soạn lời giải bài 26 trang 43 này với mục tiêu giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.
a) Cho a, b, c là các số dương thoả mãn \(a < b\). Chứng minh: \(\frac{{a + c}}{{b + c}} > \frac{a}{b}\). b) Áp dụng kết quả trên, hãy so sánh: \(M = \frac{{{{10}^{2023}} + 1}}{{{{10}^{2024}} + 1}}\) và \(N = \frac{{{{10}^{2022}} + 1}}{{{{10}^{2023}} + 1}}\)
Đề bài
a) Cho a, b, c là các số dương thoả mãn \(a < b\). Chứng minh: \(\frac{{a + c}}{{b + c}} > \frac{a}{b}\).
b) Áp dụng kết quả trên, hãy so sánh: \(M = \frac{{{{10}^{2023}} + 1}}{{{{10}^{2024}} + 1}}\) và \(N = \frac{{{{10}^{2022}} + 1}}{{{{10}^{2023}} + 1}}\)
Phương pháp giải - Xem chi tiết
Chứng minh hiệu \(\frac{{a + c}}{{b + c}} - \frac{a}{b} > 0.\)
Biến đổi \(N = \frac{{{{10}^{2022}} + 1}}{{{{10}^{2023}} + 1}} = \frac{{10\left( {{{10}^{2022}} + 1} \right)}}{{10\left( {{{10}^{2023}} + 1} \right)}} = \frac{{\left( {{{10}^{2023}} + 1} \right) + 9}}{{\left( {{{10}^{2024}} + 1} \right) + 9}}\).
Áp dụng kết quả câu a, ta được điều phải chứng minh.
Lời giải chi tiết
Xét hiệu \(\frac{{a + c}}{{b + c}} - \frac{a}{b} = \frac{{b\left( {a + c} \right) - a\left( {b + c} \right)}}{{b\left( {b + c} \right)}}\)\( = \frac{{ab + bc - ab - ac}}{{b\left( {b + c} \right)}} = \frac{{bc - ac}}{{b\left( {b + c} \right)}} = \frac{{c\left( {b - a} \right)}}{{b\left( {b + c} \right)}}\)
Do a, b, c là các số dương và \(a < b\) nên \(b - a > 0\), \(\left( {b + c} \right)\) suy ra \(\frac{{c\left( {b - a} \right)}}{{b\left( {b + c} \right)}}\), do đó \(\frac{{a + c}}{{b + c}} - \frac{a}{b}\)
Hay \(\frac{{a + c}}{{b + c}} > \frac{a}{b}\).
\(N = \frac{{{{10}^{2022}} + 1}}{{{{10}^{2023}} + 1}} = \frac{{10\left( {{{10}^{2022}} + 1} \right)}}{{10\left( {{{10}^{2023}} + 1} \right)}} = \frac{{\left( {{{10}^{2023}} + 1} \right) + 9}}{{\left( {{{10}^{2024}} + 1} \right) + 9}}\)
Theo câu a, ta có \(N = \frac{{\left( {{{10}^{2023}} + 1} \right) + 9}}{{\left( {{{10}^{2024}} + 1} \right) + 9}} > \frac{{{{10}^{2023}} + 1}}{{{{10}^{2024}} + 1}}\)
Do đó \(M < N.\)
Bài 26 trang 43 sách bài tập Toán 9 - Cánh Diều tập 1 thuộc chương trình học về hàm số bậc nhất. Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số bậc nhất để giải các bài toán thực tế, cụ thể là xác định hàm số và tính giá trị của hàm số tại một điểm cho trước.
Bài 26 bao gồm các câu hỏi nhỏ, yêu cầu học sinh:
Để giải bài 26 trang 43 sách bài tập Toán 9 - Cánh Diều tập 1, bạn cần nắm vững các kiến thức sau:
Câu a: Cho hàm số y = ax + b. Biết đồ thị của hàm số đi qua hai điểm A(0; 2) và B(1; 4). Hãy xác định hệ số a và b.
Giải:
Vì đồ thị của hàm số đi qua điểm A(0; 2), ta có: 2 = a * 0 + b => b = 2.
Vì đồ thị của hàm số đi qua điểm B(1; 4), ta có: 4 = a * 1 + b => 4 = a + 2 => a = 2.
Vậy, hàm số có dạng y = 2x + 2.
Câu b: Cho hàm số y = -3x + b. Biết đồ thị của hàm số đi qua điểm C(-1; 1). Hãy xác định hệ số b.
Giải:
Vì đồ thị của hàm số đi qua điểm C(-1; 1), ta có: 1 = -3 * (-1) + b => 1 = 3 + b => b = -2.
Vậy, hệ số b = -2.
Để củng cố kiến thức, bạn có thể làm thêm các bài tập tương tự sau:
Bài 26 trang 43 sách bài tập Toán 9 - Cánh Diều tập 1 là một bài tập quan trọng giúp bạn hiểu rõ hơn về hàm số bậc nhất. Hy vọng với lời giải chi tiết và phương pháp giải bài tập được trình bày ở trên, bạn sẽ tự tin hơn trong quá trình học tập môn Toán 9.
Công thức | Mô tả |
---|---|
y = ax + b | Phương trình hàm số bậc nhất |
a | Hệ số góc |
b | Giao điểm với trục tung |