Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập toán 9. Bài viết này sẽ hướng dẫn bạn cách giải bài 19 trang 20 sách bài tập toán 9 - Cánh diều tập 1 một cách nhanh chóng và hiệu quả.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, đặc biệt là với những bài tập đòi hỏi sự tư duy logic và vận dụng kiến thức đã học. Vì vậy, chúng tôi luôn cố gắng cung cấp những lời giải rõ ràng, chi tiết và kèm theo các giải thích cụ thể để giúp bạn hiểu rõ bản chất của bài toán.
Tìm hai số, biết rằng bốn lần số thứ nhất cộng với ba lần số thứ hai bằng 6 120 và ba lần số thứ nhất hơn hai lần số thứ hai là 1 615.
Đề bài
Tìm hai số, biết rằng bốn lần số thứ nhất cộng với ba lần số thứ hai bằng 6 120 và ba lần số thứ nhất hơn hai lần số thứ hai là 1 615.
Phương pháp giải - Xem chi tiết
Bước 1: Lập phương trình biểu diễn dữ kiện: bốn lần số thứ nhất cộng với ba lần số thứ hai bằng 6 120.
Bước 2: Lập phương trình biểu diễn dữ kiện: ba lần số thứ nhất hơn hai lần số thứ hai là 1 615.
Bước 3: Giải hệ phương trình và kết luận.
Lời giải chi tiết
Gọi số thứ nhất và số thứ 2 lần lượt là x,y.
Do bốn lần số thứ nhất cộng với ba lần số thứ hai bằng 6 120 nên ta có \(4x + 3y = {6120^{}}\)
Do ba lần số thứ nhất hơn hai lần số thứ hai là 1 615 nên ta có \(3x - 2y = {1615^{}}\)
Ta có hệ phương trình: \(\left\{ \begin{array}{l}4x + 3y = {6120^{}}\left( 1 \right)\\3x - 2y = {1615^{}}\left( 2 \right)\end{array} \right.\)
Từ phương trình (1) ta có: \(x = 1530 - \frac{{3y}}{4}\) (3)
Thế (3) vào (2) ta được \(3\left( {1530 - \frac{{3y}}{4}} \right) - 2y = 1615\) (4)
Giải phương trình (4): \(4590 - \frac{{9y}}{4} - 2y = 1615\)
\(\begin{array}{l}\frac{{17y}}{4} = 2975\\y = 700\end{array}\)
Thay \(y = 700\) vào (3) ta được \(x = 1530 - \frac{{3.700}}{4} = 1005\)
Vậy 2 số cần tìm là 700 và 1005.
Bài 19 trang 20 sách bài tập toán 9 - Cánh diều tập 1 thuộc chương trình đại số, tập trung vào việc giải phương trình bậc hai một ẩn. Để giải quyết bài toán này, học sinh cần nắm vững các kiến thức về phương trình bậc hai, công thức nghiệm và các phương pháp giải phương trình như phân tích thành nhân tử, sử dụng công thức nghiệm tổng quát, hoặc phương pháp hoàn thiện bình phương.
Bài 19 bao gồm các dạng bài tập sau:
Để giúp học sinh hiểu rõ hơn về cách giải bài 19, chúng ta sẽ đi vào giải chi tiết từng bài tập:
Giải:
Phương trình 2x2 - 5x + 2 = 0 có dạng ax2 + bx + c = 0 với a = 2, b = -5, c = 2.
Tính delta (Δ) = b2 - 4ac = (-5)2 - 4 * 2 * 2 = 25 - 16 = 9.
Vì Δ > 0, phương trình có hai nghiệm phân biệt:
x1 = (-b + √Δ) / 2a = (5 + √9) / (2 * 2) = (5 + 3) / 4 = 2
x2 = (-b - √Δ) / 2a = (5 - √9) / (2 * 2) = (5 - 3) / 4 = 0.5
Vậy, nghiệm của phương trình là x1 = 2 và x2 = 0.5.
Giải:
Phương trình x2 - 2mx + m + 1 = 0 có dạng ax2 + bx + c = 0 với a = 1, b = -2m, c = m + 1.
Để phương trình có nghiệm duy nhất, delta (Δ) phải bằng 0.
Δ = b2 - 4ac = (-2m)2 - 4 * 1 * (m + 1) = 4m2 - 4m - 4 = 0
Chia cả hai vế cho 4, ta được: m2 - m - 1 = 0
Giải phương trình bậc hai này, ta tìm được hai giá trị của m:
m1 = (1 + √5) / 2
m2 = (1 - √5) / 2
Vậy, phương trình có nghiệm duy nhất khi m = (1 + √5) / 2 hoặc m = (1 - √5) / 2.
Phương trình bậc hai có rất nhiều ứng dụng trong thực tế, ví dụ như:
Hy vọng với hướng dẫn chi tiết này, bạn đã có thể tự tin giải bài 19 trang 20 sách bài tập toán 9 - Cánh diều tập 1. Chúc bạn học tập tốt!