Logo Header
  1. Môn Toán
  2. Giải bài 60 trang 125 sách bài tập toán 9 - Cánh diều tập 1

Giải bài 60 trang 125 sách bài tập toán 9 - Cánh diều tập 1

Giải bài 60 trang 125 sách bài tập toán 9 - Cánh diều tập 1

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập toán 9. Bài viết này sẽ hướng dẫn bạn cách giải bài 60 trang 125 sách bài tập toán 9 - Cánh diều tập 1 một cách nhanh chóng và hiệu quả.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, đặc biệt là với những bài tập đòi hỏi sự tư duy và vận dụng kiến thức. Vì vậy, chúng tôi luôn cố gắng cung cấp những lời giải rõ ràng, chi tiết, kèm theo các giải thích cụ thể để giúp bạn hiểu rõ bản chất của bài toán.

Cho đường tròn (O; R) và hai điểm A, B nằm trên đường tròn sao cho độ dài cung nhỏ AB bằng \(\frac{{5\pi R}}{6}\) a) Xác định điểm C trên cung lớn AB sao cho khi kẻ CH vuông góc với AB tại H thì AH = CH. b) Tính độ dài các cung AC, BC theo R. c) Kẻ OK vuông góc với AB tại K, tia OK cắt đường tròn (O) tại E. Tính diện tích hình quạt tròn EOB (giới hạn bởi cung nhỏ BE và hai bán kính OE, OB) theo R. d) Tính tỉ số phần trăm giữa diện tích hình quạt tròn BOC (giới hạn bởi cung nhỏ BC và hai bán

Đề bài

Cho đường tròn (O; R) và hai điểm A, B nằm trên đường tròn sao cho độ dài cung nhỏ AB bằng \(\frac{{5\pi R}}{6}\)

a) Xác định điểm C trên cung lớn AB sao cho khi kẻ CH vuông góc với AB tại H thì AH = CH.

b) Tính độ dài các cung AC, BC theo R.

c) Kẻ OK vuông góc với AB tại K, tia OK cắt đường tròn (O) tại E. Tính diện tích hình quạt tròn EOB (giới hạn bởi cung nhỏ BE và hai bán kính OE, OB) theo R.

d) Tính tỉ số phần trăm giữa diện tích hình quạt tròn BOC (giới hạn bởi cung nhỏ

BC và hai bán kính OB, OC) và diện tích hình quạt tròn AOC (giới hạn bởi cung nhỏ AC và hai bán kính OA, OC).

Phương pháp giải - Xem chi tiếtGiải bài 60 trang 125 sách bài tập toán 9 - Cánh diều tập 1 1

a) Chứng minh tam giác AHC vuông cân, từ đó tính số đo cung CB.

b) Bước 1: Tính số đo cung nhỏ AB, AC.

Bước 2: Áp dụng công thức \(l = \frac{{\pi Rn}}{{180}}\).

c) Bước 1: Tính \(\widehat {BOE}\), từ đó suy ra số đo cung nhỏ EB.

Bước 2: Áp dụng công thức \(S = \frac{{\pi {R^2}n}}{{360}}\).

d) Tỉ số phần trăm = (diện tích quạt tròn BOC : Diện tích quạt tròn AOC).100%.

Lời giải chi tiết

Giải bài 60 trang 125 sách bài tập toán 9 - Cánh diều tập 1 2

a) Ta có \(CH \bot AB\) nên \(\widehat {CHA} = 90^\circ \).

Xét tam giác AHC có \(\widehat {CHA} = 90^\circ \), \(HA = CH\) nên tam giác AHC vuông cân tại H, do đó \(\widehat {CAH} = 45^\circ \).

Mặt khác, góc CAH là góc nội tiếp chắn cung CB của (O) nên sđ\(\overset\frown{CB}=2\widehat{CAH}=2.45{}^\circ =90{}^\circ \).

Vậy điểm C nằm trên cung lớn AB sao cho số đo cung CB bằng 90⁰.

b) Độ dài cung nhỏ CB có số đo 90⁰ của (O; R) là \(\frac{{\pi R.90}}{{180}} = \frac{{\pi R}}{2}\).

Độ dài cung nhỏ AB có số đo n⁰ bằng \(\frac{{5\pi R}}{6}\) nên \(\frac{{\pi R.n}}{{180}} = \frac{{5\pi R}}{6}\), hay \(n = 150^\circ \), do đó số đo góc ở tâm \(\widehat {AOB} = 150^\circ \), suy ra sđ\(\overset\frown{AB}=150{}^\circ \).

Số đo cung nhỏ AC bằng \(360{}^\circ -\text{sđ}\overset\frown{CB}-\text{sđ}\overset\frown{AB}=360{}^\circ -90{}^\circ -150{}^\circ =120{}^\circ \).

Độ dài cung nhỏ AC là \(\frac{{\pi R.120}}{{180}} = \frac{{2\pi R}}{3}\).

c) Ta có \(OA = OB\left( { = R} \right)\) nên tam giác OAB cân tại O, mà \(OK \bot AB\) do đó OK là đường cao đồng thời là đường phân giác của tam giác OAB, suy ra \(\widehat {AOK} = \widehat {BOK} = \frac{{\widehat {AOB}}}{2} = \frac{{150^\circ }}{2} = 75^\circ \).

Góc BOK hay góc BOE là góc ở tâm chắn cung EB của (O) nên sđ \(\overset\frown{EB}=\widehat{BOE}=75{}^\circ \).

Diện tích quạt tròn EOB là \(\frac{{\pi {R^2}n}}{{360}} = \frac{{\pi {R^2}.75}}{{360}} = \frac{{5\pi {R^2}}}{{24}}\).

a) Vì số đo cung CB bằng 90⁰ nên góc COB là góc ở tâm chắn cung CB cũng bằng 90⁰.

Diện tích quạt tròn BOC là \(\frac{{\pi {R^2}n}}{{360}} = \frac{{\pi {R^2}.90}}{{360}} = \frac{{\pi {R^2}}}{4}\)

Diện tích quạt tròn AOC là \(\frac{{\pi {R^2}.120}}{{360}} = \frac{{\pi {R^2}}}{3}\)

Tỉ số phần trăm giữa diện tích quạt tròn BOC và Diện tích quạt tròn AOC là

\(\frac{{\pi {R^2}}}{4}:\frac{{\pi {R^2}}}{3}.100\% = 75\% \)

Làm chủ Toán 9, tự tin vào phòng thi! Đừng bỏ lỡ Giải bài 60 trang 125 sách bài tập toán 9 - Cánh diều tập 1 đặc sắc thuộc chuyên mục giải bài tập toán 9 trên nền tảng toán math. Với bộ bài tập toán thcs được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình sách giáo khoa mới nhất, đây chính là công cụ đắc lực giúp các em tối ưu hóa ôn luyện, củng cố kiến thức vững chắc và thuần thục mọi dạng bài thi khó nhằn. Phương pháp học trực quan, khoa học sẽ mang lại hiệu quả vượt trội, giúp con bạn chinh phục mọi thử thách một cách dễ dàng.

Giải bài 60 trang 125 sách bài tập toán 9 - Cánh diều tập 1: Hướng dẫn chi tiết

Bài 60 trang 125 sách bài tập toán 9 - Cánh diều tập 1 thuộc chương trình học toán 9, tập trung vào việc ôn tập và củng cố kiến thức về hàm số bậc nhất. Bài tập này yêu cầu học sinh vận dụng các kiến thức đã học để giải quyết các bài toán thực tế liên quan đến hàm số.

Phân tích đề bài

Trước khi bắt đầu giải bài, chúng ta cần đọc kỹ đề bài và xác định rõ yêu cầu của bài toán. Bài 60 thường bao gồm các dạng bài tập sau:

  • Xác định hệ số góc và tung độ gốc của hàm số.
  • Tìm điểm thuộc đồ thị hàm số.
  • Xác định phương trình đường thẳng đi qua hai điểm cho trước.
  • Giải các bài toán ứng dụng liên quan đến hàm số.

Lời giải chi tiết bài 60 trang 125 sách bài tập toán 9 - Cánh diều tập 1

Để giúp bạn hiểu rõ hơn về cách giải bài 60, chúng ta sẽ đi vào giải chi tiết từng phần của bài tập. (Nội dung giải chi tiết sẽ được trình bày ở đây, bao gồm các bước giải, công thức sử dụng, và giải thích cụ thể cho từng bước. Ví dụ:)

Ví dụ: Cho hàm số y = 2x + 3. Hãy xác định hệ số góc và tung độ gốc của hàm số.

Giải:

Hàm số y = 2x + 3 có dạng y = ax + b, trong đó:

  • a là hệ số góc, a = 2
  • b là tung độ gốc, b = 3

Vậy, hệ số góc của hàm số là 2 và tung độ gốc là 3.

Các dạng bài tập thường gặp và phương pháp giải

Ngoài việc giải chi tiết bài 60, chúng ta cũng cần nắm vững các dạng bài tập thường gặp và phương pháp giải để có thể tự tin giải quyết các bài tập tương tự. Dưới đây là một số dạng bài tập thường gặp:

  1. Bài tập về xác định hàm số: Để xác định hàm số, bạn cần tìm mối liên hệ giữa hai biến x và y.
  2. Bài tập về đồ thị hàm số: Để vẽ đồ thị hàm số, bạn cần xác định các điểm thuộc đồ thị và nối chúng lại với nhau.
  3. Bài tập về ứng dụng hàm số: Để giải các bài toán ứng dụng, bạn cần chuyển đổi bài toán thực tế thành bài toán toán học và sử dụng các kiến thức về hàm số để giải quyết.

Lưu ý khi giải bài tập về hàm số bậc nhất

Để giải bài tập về hàm số bậc nhất một cách hiệu quả, bạn cần lưu ý những điều sau:

  • Đọc kỹ đề bài và xác định rõ yêu cầu của bài toán.
  • Vận dụng các kiến thức đã học về hàm số bậc nhất.
  • Kiểm tra lại kết quả sau khi giải xong.
  • Thực hành giải nhiều bài tập khác nhau để nắm vững kiến thức.

Tổng kết

Bài 60 trang 125 sách bài tập toán 9 - Cánh diều tập 1 là một bài tập quan trọng giúp bạn củng cố kiến thức về hàm số bậc nhất. Hy vọng rằng với hướng dẫn chi tiết này, bạn đã có thể giải bài tập một cách dễ dàng và hiệu quả. Chúc bạn học tốt!

Tài liệu, đề thi và đáp án Toán 9