Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 9. Bài viết này sẽ hướng dẫn bạn cách giải bài 37 trang 67 Sách bài tập Toán 9 - Cánh Diều tập 1 một cách nhanh chóng và hiệu quả.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, đặc biệt là với những bài tập đòi hỏi sự tư duy và vận dụng kiến thức. Vì vậy, chúng tôi luôn cố gắng cung cấp những lời giải rõ ràng, chi tiết, kèm theo các giải thích cụ thể để bạn có thể hiểu rõ bản chất của bài toán.
a) Cho biểu thức: \(C = \frac{1}{{\sqrt 2 }} + \frac{1}{{\sqrt 3 }} + \frac{1}{{\sqrt 4 }} + ... + \frac{1}{{\sqrt {24} }} + \frac{1}{{\sqrt {25} }}.\) Chứng minh \(C > \frac{{24}}{5}.\) b) Cho biểu thức \(D = \left( {\frac{{y - 2}}{{y + 2\sqrt y }} + \frac{1}{{\sqrt y + 2}}} \right).\frac{{\sqrt y + 1}}{{\sqrt y - 1}}\) với \(y > 0,y \ne 1.\) Chứng minh \(D = \frac{{\sqrt y + 1}}{{\sqrt y }}.\)
Đề bài
a)Cho biểu thức: \(C = \frac{1}{{\sqrt 2 }} + \frac{1}{{\sqrt 3 }} + \frac{1}{{\sqrt 4 }} + ... + \frac{1}{{\sqrt {24} }} + \frac{1}{{\sqrt {25} }}.\) Chứng minh \(C > \frac{{24}}{5}.\)
b) Cho biểu thức \(D = \left( {\frac{{y - 2}}{{y + 2\sqrt y }} + \frac{1}{{\sqrt y + 2}}} \right).\frac{{\sqrt y + 1}}{{\sqrt y - 1}}\) với \(y > 0,y \ne 1.\) Chứng minh \(D = \frac{{\sqrt y + 1}}{{\sqrt y }}.\)
Phương pháp giải - Xem chi tiết
a) Ta thấy biểu thức C có 24 hạng tử, ta so sánh mỗi hạng tử với \(\frac{1}{{\sqrt {25} }}\), tức là:
\(C = \frac{1}{{\sqrt 2 }} + \frac{1}{{\sqrt 3 }} + \frac{1}{{\sqrt 4 }} + ... + \frac{1}{{\sqrt {25} }} > \frac{1}{{\sqrt {25} }} + \frac{1}{{\sqrt {25} }} + \frac{1}{{\sqrt {25} }} + ... + \frac{1}{{\sqrt {25} }}\)
Từ đó ta được đpcm.
b) Biến đổi \(\frac{{y - 2}}{{y + 2\sqrt y }} + \frac{1}{{\sqrt y + 2}} = \frac{{y - 2}}{{\sqrt y \left( {\sqrt y + 2} \right)}} + \frac{1}{{\sqrt y + 2}} = \frac{{y - 2 + \sqrt y }}{{\sqrt y \left( {\sqrt y + 2} \right)}} = \frac{{\left( {\sqrt y - 1} \right)\left( {\sqrt y + 2} \right)}}{{\sqrt y \left( {\sqrt y + 2} \right)}}\)
Lời giải chi tiết
a) Ta có: \(2 < 3 < 4 < ... < 25\) nên \(\sqrt 2 < \sqrt 3 < \sqrt 4 < ... < \sqrt {25} \), do đó \(\frac{1}{{\sqrt 2 }} > \frac{1}{{\sqrt 3 }} > \frac{1}{{\sqrt 4 }} > ... > \frac{1}{{\sqrt {25} }}\).
Suy ra \(\frac{1}{{\sqrt 2 }} + \frac{1}{{\sqrt 3 }} + \frac{1}{{\sqrt 4 }} + ... + \frac{1}{{\sqrt {25} }} > \frac{1}{{\sqrt {25} }} + \frac{1}{{\sqrt {25} }} + \frac{1}{{\sqrt {25} }} + ... + \frac{1}{{\sqrt {25} }}\) (24 hạng tử \(\frac{1}{{\sqrt {25} }}\)).
Hay \(C > 24.\frac{1}{{\sqrt {25} }}\). Vậy \(C > \frac{{24}}{5}\).
b) \(D = \left( {\frac{{y - 2}}{{y + 2\sqrt y }} + \frac{1}{{\sqrt y + 2}}} \right).\frac{{\sqrt y + 1}}{{\sqrt y - 1}}\)
\(\begin{array}{l} = \left( {\frac{{y - 2}}{{\sqrt y \left( {\sqrt y + 2} \right)}} + \frac{1}{{\sqrt y + 2}}} \right).\frac{{\sqrt y + 1}}{{\sqrt y - 1}}\\ = \frac{{y - 2 + \sqrt y }}{{\sqrt y \left( {\sqrt y + 2} \right)}}.\frac{{\sqrt y + 1}}{{\sqrt y - 1}}\\ = \frac{{\left( {\sqrt y - 1} \right)\left( {\sqrt y + 2} \right)}}{{\sqrt y \left( {\sqrt y + 2} \right)}}.\frac{{\sqrt y + 1}}{{\sqrt y - 1}}\\ = \frac{{\sqrt y + 1}}{{\sqrt y }}\end{array}\)
Vậy \(D = \frac{{\sqrt y + 1}}{{\sqrt y }}.\)
Bài 37 trang 67 Sách bài tập Toán 9 - Cánh Diều tập 1 thuộc chương trình học Toán 9, tập trung vào việc ôn tập và củng cố kiến thức về hàm số bậc nhất. Bài tập này yêu cầu học sinh vận dụng các kiến thức đã học để giải quyết các bài toán thực tế liên quan đến hàm số, biểu đồ hàm số và ứng dụng của hàm số trong đời sống.
Bài 37 bao gồm các dạng bài tập sau:
Để giúp bạn giải bài 37 trang 67 Sách bài tập Toán 9 - Cánh Diều tập 1 một cách hiệu quả, chúng tôi sẽ cung cấp hướng dẫn giải chi tiết cho từng dạng bài tập:
Để xác định hệ số góc và tung độ gốc của hàm số bậc nhất y = ax + b, bạn cần:
Ví dụ: Cho hàm số y = 2x - 3. Hệ số góc là a = 2, tung độ gốc là b = -3.
Để vẽ đồ thị hàm số bậc nhất y = ax + b, bạn cần:
Ví dụ: Vẽ đồ thị hàm số y = x + 1. Chọn x = 0, ta có y = 1. Chọn x = 1, ta có y = 2. Vẽ đường thẳng đi qua hai điểm (0, 1) và (1, 2).
Để tìm tọa độ giao điểm của hai đường thẳng y = a1x + b1 và y = a2x + b2, bạn cần:
Ví dụ: Tìm tọa độ giao điểm của hai đường thẳng y = 2x + 1 và y = -x + 4. Giải hệ phương trình: 2x + 1 = -x + 4 Suy ra: 3x = 3 x = 1 Thay x = 1 vào phương trình y = 2x + 1, ta có y = 3. Vậy tọa độ giao điểm là (1, 3).
Trong các bài toán thực tế, hàm số bậc nhất thường được sử dụng để mô tả mối quan hệ giữa hai đại lượng thay đổi. Để giải quyết các bài toán này, bạn cần:
Ví dụ: Một người đi xe đạp với vận tốc 15 km/h. Quãng đường đi được sau t giờ là bao nhiêu?
Giải: Quãng đường đi được là hàm số bậc nhất của thời gian: s = 15t (km).
Hy vọng rằng với hướng dẫn chi tiết này, bạn đã có thể giải bài 37 trang 67 Sách bài tập Toán 9 - Cánh Diều tập 1 một cách dễ dàng và hiệu quả. Chúc bạn học tốt!