Logo Header
  1. Môn Toán
  2. Giải bài 32 trang 66 sách bài tập toán 9 - Cánh diều tập 1

Giải bài 32 trang 66 sách bài tập toán 9 - Cánh diều tập 1

Giải bài 32 trang 66 Sách bài tập Toán 9 - Cánh Diều tập 1

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 9. Bài viết này sẽ hướng dẫn bạn giải bài 32 trang 66 Sách bài tập Toán 9 - Cánh Diều tập 1 một cách nhanh chóng và hiệu quả.

Chúng tôi luôn cố gắng mang đến những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và tự tin hơn trong các kỳ thi.

Áp dụng quy tắc về căn thức bậc hai của một tích và một thương, hãy rút gọn biểu thức: a) \(\sqrt {98{x^2}} .\sqrt {{y^3}} \) với \(x < 0,y \ge 0\) b) \(\sqrt {{x^3}{{\left( {x - 1} \right)}^2}} \) với \(x \ge 1\) c) \(\sqrt {{x^4}} .\sqrt {{{\left( {x - 7} \right)}^2}} \) với \(x > 7\) d) \(\sqrt {\frac{{{x^2}}}{{36 - 12x + {x^2}}}} \) e) \(\frac{{\sqrt {1250{{\left( {x - 5} \right)}^3}} }}{{\sqrt {2{{\left( {x - 5} \right)}^5}} }}\) với \(x < 5\) g) \(\sqrt {\frac{{1 + x - 2\sqrt x }}{{

Đề bài

Áp dụng quy tắc về căn thức bậc hai của một tích và một thương, hãy rút gọn biểu thức:

a) \(\sqrt {98{x^2}} .\sqrt {{y^3}} \) với \(x < 0,y \ge 0\)

b) \(\sqrt {{x^3}{{\left( {x - 1} \right)}^2}} \) với \(x \ge 1\)

c) \(\sqrt {{x^4}} .\sqrt {{{\left( {x - 7} \right)}^2}} \) với \(x > 7\)

d) \(\sqrt {\frac{{{x^2}}}{{36 - 12x + {x^2}}}} \)

e) \(\frac{{\sqrt {1250{{\left( {x - 5} \right)}^3}} }}{{\sqrt {2{{\left( {x - 5} \right)}^5}} }}\) với \(x < 5\)

g) \(\sqrt {\frac{{1 + x - 2\sqrt x }}{{1 + x + 2\sqrt x }}} \) với \(x \ge 0\)

Phương pháp giải - Xem chi tiếtGiải bài 32 trang 66 sách bài tập toán 9 - Cánh diều tập 1 1

Áp dụng: \(\sqrt a .\sqrt b = \sqrt {ab} \) với \(a \ge 0,b \ge 0\); \(\frac{{\sqrt a }}{{\sqrt b }} = \sqrt {\frac{a}{b}} \) với \(a \ge 0,b > 0.\)

Lời giải chi tiết

a) \(\sqrt {98{x^2}} .\sqrt {{y^3}} \)

\(= \sqrt {49.2.{x^2}.{y^2}.y} = 7.\left| x \right|\sqrt {2y} = - 7x\sqrt {2y} \) với \(x < 0,y \ge 0\).

b) \(\sqrt {{x^3}{{\left( {x - 1} \right)}^2}} \)

\(= \sqrt {{{\left[ {x\left( {x - 1} \right)} \right]}^2}.x} = \left| {x\left( {x - 1} \right)} \right|\sqrt x = x\left( {x - 1} \right).\sqrt x \) với \(x \ge 1\).

c) \(\sqrt {{x^4}} .\sqrt {{{\left( {x - 7} \right)}^2}} \)

\(= {x^2}.\left| {x - 7} \right| = {x^2}\left( {x - 7} \right)\) với \(x > 7\).

d) \(\sqrt {\frac{{{x^2}}}{{36 - 12x + {x^2}}}} \)

\(= \sqrt {\frac{{{x^2}}}{{{{\left( {6 - x} \right)}^2}}}} = \left| {\frac{x}{{6 - x}}} \right| = \frac{x}{{x - 6}}\) với \(x > 6\).

e) \(\frac{{\sqrt {1250{{\left( {x - 5} \right)}^3}} }}{{\sqrt {2{{\left( {x - 5} \right)}^5}} }} \)

\(= \sqrt {\frac{{1250{{\left( {x - 5} \right)}^3}}}{{2{{\left( {x - 5} \right)}^5}}}} = \sqrt {\frac{{625}}{{{{\left( {x - 5} \right)}^2}}}} = \left| {\frac{{25}}{{x - 5}}} \right| = \frac{{25}}{{5 - x}}\) với \(x < 5\)

g) \(\sqrt {\frac{{1 + x - 2\sqrt x }}{{1 + x + 2\sqrt x }}} \)

\(= \sqrt {\frac{{{{\left( {1 - \sqrt x } \right)}^2}}}{{{{\left( {1 + \sqrt x } \right)}^2}}} = } \frac{{\left| {1 - \sqrt x } \right|}}{{1 + \sqrt x }}\) với \(x \ge 0\).

Làm chủ Toán 9, tự tin vào phòng thi! Đừng bỏ lỡ Giải bài 32 trang 66 sách bài tập toán 9 - Cánh diều tập 1 đặc sắc thuộc chuyên mục toán 9 sgk trên nền tảng soạn toán. Với bộ bài tập toán thcs được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình sách giáo khoa mới nhất, đây chính là công cụ đắc lực giúp các em tối ưu hóa ôn luyện, củng cố kiến thức vững chắc và thuần thục mọi dạng bài thi khó nhằn. Phương pháp học trực quan, khoa học sẽ mang lại hiệu quả vượt trội, giúp con bạn chinh phục mọi thử thách một cách dễ dàng.

Giải bài 32 trang 66 Sách bài tập Toán 9 - Cánh Diều tập 1: Tổng quan

Bài 32 trang 66 Sách bài tập Toán 9 - Cánh Diều tập 1 thuộc chương trình học Toán 9, tập trung vào việc ôn tập và củng cố kiến thức về hàm số bậc nhất. Bài tập này yêu cầu học sinh vận dụng các kiến thức đã học để giải quyết các bài toán thực tế, rèn luyện kỹ năng tư duy logic và khả năng giải quyết vấn đề.

Nội dung bài tập

Bài 32 trang 66 Sách bài tập Toán 9 - Cánh Diều tập 1 thường bao gồm các dạng bài tập sau:

  • Xác định hàm số bậc nhất: Học sinh cần xác định các hệ số a, b trong hàm số y = ax + b dựa vào các thông tin đề bài cung cấp.
  • Tìm giao điểm của hai đường thẳng: Sử dụng phương pháp giải hệ phương trình để tìm tọa độ giao điểm của hai đường thẳng.
  • Ứng dụng hàm số bậc nhất vào giải quyết bài toán thực tế: Ví dụ như bài toán về quãng đường, thời gian, vận tốc.
  • Vẽ đồ thị hàm số bậc nhất: Xác định các điểm thuộc đồ thị và vẽ đồ thị trên mặt phẳng tọa độ.

Hướng dẫn giải chi tiết bài 32 trang 66

Để giải bài 32 trang 66 Sách bài tập Toán 9 - Cánh Diều tập 1 một cách hiệu quả, bạn cần:

  1. Đọc kỹ đề bài: Xác định rõ yêu cầu của bài toán và các thông tin đã cho.
  2. Vận dụng kiến thức: Sử dụng các công thức, định lý và phương pháp đã học để giải quyết bài toán.
  3. Kiểm tra lại kết quả: Đảm bảo kết quả của bạn là chính xác và hợp lý.

Dưới đây là hướng dẫn giải chi tiết cho từng phần của bài 32 (ví dụ, giả sử bài 32 có 3 câu nhỏ):

Câu a:

Đề bài: (Ví dụ) Xác định hệ số a và b của hàm số y = ax + b biết hàm số đi qua hai điểm A(1; 2) và B(-1; 0).

Giải:

Thay tọa độ điểm A(1; 2) vào hàm số, ta được: 2 = a * 1 + b => a + b = 2 (1)

Thay tọa độ điểm B(-1; 0) vào hàm số, ta được: 0 = a * (-1) + b => -a + b = 0 (2)

Giải hệ phương trình (1) và (2), ta được: a = 1, b = 1

Vậy hàm số có dạng y = x + 1.

Câu b:

Đề bài: (Ví dụ) Tìm giao điểm của hai đường thẳng y = 2x - 1 và y = -x + 2.

Giải:

Để tìm giao điểm, ta giải hệ phương trình:

y = 2x - 1

y = -x + 2

Thay y = 2x - 1 vào phương trình thứ hai, ta được: 2x - 1 = -x + 2 => 3x = 3 => x = 1

Thay x = 1 vào phương trình y = 2x - 1, ta được: y = 2 * 1 - 1 = 1

Vậy giao điểm của hai đường thẳng là (1; 1).

Câu c:

Đề bài: (Ví dụ) Một ô tô đi từ A đến B với vận tốc 60km/h. Hỏi sau 2 giờ ô tô đi được quãng đường bao nhiêu km?

Giải:

Quãng đường ô tô đi được là: S = v * t = 60 * 2 = 120 (km)

Vậy sau 2 giờ ô tô đi được 120km.

Lưu ý khi giải bài tập

Khi giải bài tập về hàm số bậc nhất, bạn cần chú ý:

  • Đơn vị: Đảm bảo các đơn vị trong bài toán là thống nhất.
  • Kiểm tra điều kiện: Kiểm tra xem các điều kiện của bài toán có được thỏa mãn hay không.
  • Sử dụng máy tính bỏ túi: Sử dụng máy tính bỏ túi để tính toán nhanh chóng và chính xác.

Tổng kết

Bài 32 trang 66 Sách bài tập Toán 9 - Cánh Diều tập 1 là một bài tập quan trọng giúp bạn củng cố kiến thức về hàm số bậc nhất. Hy vọng với hướng dẫn chi tiết này, bạn sẽ giải quyết bài tập một cách dễ dàng và hiệu quả. Chúc bạn học tốt!

Tài liệu, đề thi và đáp án Toán 9