Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập toán 9. Bài viết này sẽ hướng dẫn bạn giải bài 50 trang 69 sách bài tập toán 9 - Cánh diều tập 1 một cách nhanh chóng và hiệu quả.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, đặc biệt là với những bài tập đòi hỏi sự tư duy và vận dụng kiến thức. Vì vậy, chúng tôi luôn cố gắng trình bày lời giải một cách rõ ràng, logic và dễ tiếp thu nhất.
Cho biểu thức \(C = \left( {\frac{{\sqrt x - 2}}{{x - 1}} - \frac{{\sqrt x + 2}}{{x + 2\sqrt x + 1}}} \right).\frac{{{{\left( {1 - x} \right)}^2}}}{2}\) với \(x \ge 0,x \ne 1\). a) Rút gọn biểu thức C. b) Tìm giá trị lớn nhất của C. c) Tìm giá trị của \(x\) để C có giá trị là các số dương.
Đề bài
Cho biểu thức \(C = \left( {\frac{{\sqrt x - 2}}{{x - 1}} - \frac{{\sqrt x + 2}}{{x + 2\sqrt x + 1}}} \right).\frac{{{{\left( {1 - x} \right)}^2}}}{2}\) với \(x \ge 0,x \ne 1\).
a) Rút gọn biểu thức C.
b) Tìm giá trị lớn nhất của C.
c) Tìm giá trị của \(x\) để C có giá trị là các số dương.
Phương pháp giải - Xem chi tiết
a) Quy đồng mẫu thức các phân thức trong ngoặc.
b) Biến đổi \(C = - \sqrt x \left( {\sqrt x - 1} \right) = - \left( {x - \sqrt x } \right) = - \left( {x - 2.\frac{1}{2}\sqrt x + \frac{1}{4}} \right) + \frac{1}{4} = - {\left( {\sqrt x - \frac{1}{2}} \right)^2} + \frac{1}{4}\)
Biện luận giá trị lớn nhất của C.
c) Áp dụng \(A.B > 0\) khi A,B cùng dấu.
Lời giải chi tiết
a) \(C = \left( {\frac{{\sqrt x - 2}}{{x - 1}} - \frac{{\sqrt x + 2}}{{x + 2\sqrt x + 1}}} \right).\frac{{{{\left( {1 - x} \right)}^2}}}{2}\)
\(= \left( {\frac{{\sqrt x - 2}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}} - \frac{{\sqrt x + 2}}{{{{\left( {\sqrt x + 1} \right)}^2}}}} \right).\frac{{{{\left( {1 - x} \right)}^2}}}{2}\)
\( = \left( {\frac{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 1} \right)}}{{\left( {\sqrt x - 1} \right){{\left( {\sqrt x + 1} \right)}^2}}} - \frac{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 1} \right)}}{{{{\left( {\sqrt x + 1} \right)}^2}\left( {\sqrt x - 1} \right)}}} \right).\frac{{{{\left( {1 - x} \right)}^2}}}{2}\)
\(\begin{array}{l} = \left( {\frac{{x - \sqrt x - 2}}{{\left( {\sqrt x - 1} \right){{\left( {\sqrt x + 1} \right)}^2}}} - \frac{{x + \sqrt x - 2}}{{{{\left( {\sqrt x + 1} \right)}^2}\left( {\sqrt x - 1} \right)}}} \right).\frac{{{{\left( {1 - x} \right)}^2}}}{2}\\ = \frac{{x - \sqrt x - 2 - x - \sqrt x + 2}}{{\left( {\sqrt x - 1} \right){{\left( {\sqrt x + 1} \right)}^2}}}.\frac{{{{\left( {1 - x} \right)}^2}}}{2}\\ = \frac{{ - 2\sqrt x }}{{\left( {\sqrt x - 1} \right){{\left( {\sqrt x + 1} \right)}^2}}}.\frac{{{{\left( {1 - x} \right)}^2}}}{2}\\ = \frac{{ - \sqrt x {{\left( {1 - x} \right)}^2}}}{{\left( {x - 1} \right)\left( {\sqrt x + 1} \right)}}\\ = \frac{{ - \sqrt x \left( {x - 1} \right)}}{{\sqrt x + 1}}\\ = - \sqrt x \left( {\sqrt x - 1} \right)\end{array}\)
Vậy \(C = - \sqrt x \left( {\sqrt x - 1} \right)\) với \(x \ge 0,x \ne 1\).
b) \(C = - \sqrt x \left( {\sqrt x - 1} \right) = - \left( {x - \sqrt x } \right)\)
\( = - \left( {x - 2.\frac{1}{2}\sqrt x + \frac{1}{4}} \right) + \frac{1}{4} = - {\left( {\sqrt x - \frac{1}{2}} \right)^2} + \frac{1}{4}\)
Với \(x \ge 0,x \ne 1\) ta có \({\left( {\sqrt x - \frac{1}{2}} \right)^2} \ge 0\) suy ra \( - {\left( {\sqrt x - \frac{1}{2}} \right)^2} \le 0\), do đó \( - {\left( {\sqrt x - \frac{1}{2}} \right)^2} + \frac{1}{4} \le \frac{1}{4}\)
Dấu “=” xảy ra khi \({\left( {\sqrt x - \frac{1}{2}} \right)^2} = 0\) hay \(x = \frac{1}{4}\) (tmdk).
Vậy giá trị lớn nhất của C là \(\frac{1}{4}\) khi \(x = \frac{1}{4}\).
c) Ta có \(C = - \sqrt x \left( {\sqrt x - 1} \right) = \sqrt x \left( {1 - \sqrt x } \right)\)
Ta thấy \(\sqrt x \ge 0\) với \(x \ge 0\) nên \(C > 0\) khi \(\sqrt x > 0\) và \(1 - \sqrt x > 0\)
\(\sqrt x > 0\) hay \(x > 0\)
\(1 - \sqrt x > 0\) hay \(x < 1\)
Kết hợp với điều kiện xác định, ta có \(0 < x < 1\). Vậy \(0 < x < 1\) thỏa mãn đề bài.
Bài 50 trang 69 sách bài tập toán 9 - Cánh diều tập 1 thuộc chương trình đại số, tập trung vào việc giải phương trình bậc hai một ẩn. Bài tập này yêu cầu học sinh vận dụng các kiến thức đã học về công thức nghiệm của phương trình bậc hai, điều kiện xác định của nghiệm, và các phương pháp giải phương trình như phân tích thành nhân tử, sử dụng công thức nghiệm tổng quát.
Bài 50 bao gồm một số câu hỏi nhỏ, yêu cầu học sinh:
Để giúp các em học sinh hiểu rõ hơn về cách giải bài 50 trang 69, chúng ta sẽ đi vào giải chi tiết từng câu hỏi:
Ta có phương trình: 2x2 - 5x + 2 = 0
Tính delta (Δ): Δ = b2 - 4ac = (-5)2 - 4 * 2 * 2 = 25 - 16 = 9
Vì Δ > 0, phương trình có hai nghiệm phân biệt:
x1 = (-b + √Δ) / 2a = (5 + √9) / (2 * 2) = (5 + 3) / 4 = 2
x2 = (-b - √Δ) / 2a = (5 - √9) / (2 * 2) = (5 - 3) / 4 = 0.5
Vậy, nghiệm của phương trình là x1 = 2 và x2 = 0.5
Ta có phương trình: x2 - 4x + 4 = 0
Tính delta (Δ): Δ = b2 - 4ac = (-4)2 - 4 * 1 * 4 = 16 - 16 = 0
Vì Δ = 0, phương trình có nghiệm kép:
x = -b / 2a = -(-4) / (2 * 1) = 2
Vậy, nghiệm của phương trình là x = 2
Ta có phương trình: x2 + x + 1 = 0
Tính delta (Δ): Δ = b2 - 4ac = (1)2 - 4 * 1 * 1 = 1 - 4 = -3
Vì Δ < 0, phương trình vô nghiệm.
Để giải nhanh các phương trình bậc hai, bạn có thể sử dụng một số mẹo sau:
Để củng cố kiến thức và kỹ năng giải phương trình bậc hai, bạn có thể luyện tập thêm các bài tập sau:
Bài 50 trang 69 sách bài tập toán 9 - Cánh diều tập 1 là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng giải phương trình bậc hai. Hy vọng rằng với lời giải chi tiết và các mẹo giải nhanh mà chúng tôi đã cung cấp, các em học sinh sẽ tự tin hơn khi đối mặt với bài tập này.