Logo Header
  1. Môn Toán
  2. Giải bài 50 trang 69 sách bài tập toán 9 - Cánh diều tập 1

Giải bài 50 trang 69 sách bài tập toán 9 - Cánh diều tập 1

Giải bài 50 trang 69 sách bài tập toán 9 - Cánh diều tập 1

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập toán 9. Bài viết này sẽ hướng dẫn bạn giải bài 50 trang 69 sách bài tập toán 9 - Cánh diều tập 1 một cách nhanh chóng và hiệu quả.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, đặc biệt là với những bài tập đòi hỏi sự tư duy và vận dụng kiến thức. Vì vậy, chúng tôi luôn cố gắng trình bày lời giải một cách rõ ràng, logic và dễ tiếp thu nhất.

Cho biểu thức \(C = \left( {\frac{{\sqrt x - 2}}{{x - 1}} - \frac{{\sqrt x + 2}}{{x + 2\sqrt x + 1}}} \right).\frac{{{{\left( {1 - x} \right)}^2}}}{2}\) với \(x \ge 0,x \ne 1\). a) Rút gọn biểu thức C. b) Tìm giá trị lớn nhất của C. c) Tìm giá trị của \(x\) để C có giá trị là các số dương.

Đề bài

Cho biểu thức \(C = \left( {\frac{{\sqrt x - 2}}{{x - 1}} - \frac{{\sqrt x + 2}}{{x + 2\sqrt x + 1}}} \right).\frac{{{{\left( {1 - x} \right)}^2}}}{2}\) với \(x \ge 0,x \ne 1\).

a) Rút gọn biểu thức C.

b) Tìm giá trị lớn nhất của C.

c) Tìm giá trị của \(x\) để C có giá trị là các số dương.

Phương pháp giải - Xem chi tiếtGiải bài 50 trang 69 sách bài tập toán 9 - Cánh diều tập 1 1

a) Quy đồng mẫu thức các phân thức trong ngoặc.

b) Biến đổi \(C = - \sqrt x \left( {\sqrt x - 1} \right) = - \left( {x - \sqrt x } \right) = - \left( {x - 2.\frac{1}{2}\sqrt x + \frac{1}{4}} \right) + \frac{1}{4} = - {\left( {\sqrt x - \frac{1}{2}} \right)^2} + \frac{1}{4}\)

Biện luận giá trị lớn nhất của C.

c) Áp dụng \(A.B > 0\) khi A,B cùng dấu.

Lời giải chi tiết

a) \(C = \left( {\frac{{\sqrt x - 2}}{{x - 1}} - \frac{{\sqrt x + 2}}{{x + 2\sqrt x + 1}}} \right).\frac{{{{\left( {1 - x} \right)}^2}}}{2}\)

\(= \left( {\frac{{\sqrt x - 2}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}} - \frac{{\sqrt x + 2}}{{{{\left( {\sqrt x + 1} \right)}^2}}}} \right).\frac{{{{\left( {1 - x} \right)}^2}}}{2}\)

\( = \left( {\frac{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 1} \right)}}{{\left( {\sqrt x - 1} \right){{\left( {\sqrt x + 1} \right)}^2}}} - \frac{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 1} \right)}}{{{{\left( {\sqrt x + 1} \right)}^2}\left( {\sqrt x - 1} \right)}}} \right).\frac{{{{\left( {1 - x} \right)}^2}}}{2}\)

\(\begin{array}{l} = \left( {\frac{{x - \sqrt x - 2}}{{\left( {\sqrt x - 1} \right){{\left( {\sqrt x + 1} \right)}^2}}} - \frac{{x + \sqrt x - 2}}{{{{\left( {\sqrt x + 1} \right)}^2}\left( {\sqrt x - 1} \right)}}} \right).\frac{{{{\left( {1 - x} \right)}^2}}}{2}\\ = \frac{{x - \sqrt x - 2 - x - \sqrt x + 2}}{{\left( {\sqrt x - 1} \right){{\left( {\sqrt x + 1} \right)}^2}}}.\frac{{{{\left( {1 - x} \right)}^2}}}{2}\\ = \frac{{ - 2\sqrt x }}{{\left( {\sqrt x - 1} \right){{\left( {\sqrt x + 1} \right)}^2}}}.\frac{{{{\left( {1 - x} \right)}^2}}}{2}\\ = \frac{{ - \sqrt x {{\left( {1 - x} \right)}^2}}}{{\left( {x - 1} \right)\left( {\sqrt x + 1} \right)}}\\ = \frac{{ - \sqrt x \left( {x - 1} \right)}}{{\sqrt x + 1}}\\ = - \sqrt x \left( {\sqrt x - 1} \right)\end{array}\)

Vậy \(C = - \sqrt x \left( {\sqrt x - 1} \right)\) với \(x \ge 0,x \ne 1\).

b) \(C = - \sqrt x \left( {\sqrt x - 1} \right) = - \left( {x - \sqrt x } \right)\)

\( = - \left( {x - 2.\frac{1}{2}\sqrt x + \frac{1}{4}} \right) + \frac{1}{4} = - {\left( {\sqrt x - \frac{1}{2}} \right)^2} + \frac{1}{4}\)

Với \(x \ge 0,x \ne 1\) ta có \({\left( {\sqrt x - \frac{1}{2}} \right)^2} \ge 0\) suy ra \( - {\left( {\sqrt x - \frac{1}{2}} \right)^2} \le 0\), do đó \( - {\left( {\sqrt x - \frac{1}{2}} \right)^2} + \frac{1}{4} \le \frac{1}{4}\)

Dấu “=” xảy ra khi \({\left( {\sqrt x - \frac{1}{2}} \right)^2} = 0\) hay \(x = \frac{1}{4}\) (tmdk).

Vậy giá trị lớn nhất của C là \(\frac{1}{4}\) khi \(x = \frac{1}{4}\).

c) Ta có \(C = - \sqrt x \left( {\sqrt x - 1} \right) = \sqrt x \left( {1 - \sqrt x } \right)\)

Ta thấy \(\sqrt x \ge 0\) với \(x \ge 0\) nên \(C > 0\) khi \(\sqrt x > 0\) và \(1 - \sqrt x > 0\)

\(\sqrt x > 0\) hay \(x > 0\)

\(1 - \sqrt x > 0\) hay \(x < 1\)

Kết hợp với điều kiện xác định, ta có \(0 < x < 1\). Vậy \(0 < x < 1\) thỏa mãn đề bài.

Làm chủ Toán 9, tự tin vào phòng thi! Đừng bỏ lỡ Giải bài 50 trang 69 sách bài tập toán 9 - Cánh diều tập 1 đặc sắc thuộc chuyên mục giải bài tập toán lớp 9 trên nền tảng toán math. Với bộ bài tập toán thcs được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình sách giáo khoa mới nhất, đây chính là công cụ đắc lực giúp các em tối ưu hóa ôn luyện, củng cố kiến thức vững chắc và thuần thục mọi dạng bài thi khó nhằn. Phương pháp học trực quan, khoa học sẽ mang lại hiệu quả vượt trội, giúp con bạn chinh phục mọi thử thách một cách dễ dàng.

Giải bài 50 trang 69 sách bài tập toán 9 - Cánh diều tập 1: Tổng quan

Bài 50 trang 69 sách bài tập toán 9 - Cánh diều tập 1 thuộc chương trình đại số, tập trung vào việc giải phương trình bậc hai một ẩn. Bài tập này yêu cầu học sinh vận dụng các kiến thức đã học về công thức nghiệm của phương trình bậc hai, điều kiện xác định của nghiệm, và các phương pháp giải phương trình như phân tích thành nhân tử, sử dụng công thức nghiệm tổng quát.

Nội dung bài tập

Bài 50 bao gồm một số câu hỏi nhỏ, yêu cầu học sinh:

  • Giải các phương trình bậc hai cụ thể.
  • Xác định điều kiện để phương trình có nghiệm.
  • Tìm các giá trị của tham số để phương trình có nghiệm duy nhất, vô nghiệm, hoặc có hai nghiệm phân biệt.
  • Vận dụng phương trình bậc hai để giải các bài toán thực tế.

Lời giải chi tiết bài 50 trang 69

Để giúp các em học sinh hiểu rõ hơn về cách giải bài 50 trang 69, chúng ta sẽ đi vào giải chi tiết từng câu hỏi:

Câu a: Giải phương trình 2x2 - 5x + 2 = 0

Ta có phương trình: 2x2 - 5x + 2 = 0

Tính delta (Δ): Δ = b2 - 4ac = (-5)2 - 4 * 2 * 2 = 25 - 16 = 9

Vì Δ > 0, phương trình có hai nghiệm phân biệt:

x1 = (-b + √Δ) / 2a = (5 + √9) / (2 * 2) = (5 + 3) / 4 = 2

x2 = (-b - √Δ) / 2a = (5 - √9) / (2 * 2) = (5 - 3) / 4 = 0.5

Vậy, nghiệm của phương trình là x1 = 2 và x2 = 0.5

Câu b: Giải phương trình x2 - 4x + 4 = 0

Ta có phương trình: x2 - 4x + 4 = 0

Tính delta (Δ): Δ = b2 - 4ac = (-4)2 - 4 * 1 * 4 = 16 - 16 = 0

Vì Δ = 0, phương trình có nghiệm kép:

x = -b / 2a = -(-4) / (2 * 1) = 2

Vậy, nghiệm của phương trình là x = 2

Câu c: Giải phương trình x2 + x + 1 = 0

Ta có phương trình: x2 + x + 1 = 0

Tính delta (Δ): Δ = b2 - 4ac = (1)2 - 4 * 1 * 1 = 1 - 4 = -3

Vì Δ < 0, phương trình vô nghiệm.

Mẹo giải nhanh

Để giải nhanh các phương trình bậc hai, bạn có thể sử dụng một số mẹo sau:

  • Nếu a + b + c = 0, thì phương trình có một nghiệm là x1 = 1 và x2 = c/a.
  • Nếu phương trình có dạng ax2 + bx + c = 0 và Δ là một số chính phương, thì phương trình có hai nghiệm hữu tỉ.
  • Sử dụng công thức nghiệm tổng quát để tìm nghiệm của phương trình.

Luyện tập thêm

Để củng cố kiến thức và kỹ năng giải phương trình bậc hai, bạn có thể luyện tập thêm các bài tập sau:

  • Giải các phương trình bậc hai trong sách bài tập toán 9 - Cánh diều tập 1.
  • Tìm kiếm các bài tập tương tự trên internet.
  • Tham gia các khóa học toán online.

Kết luận

Bài 50 trang 69 sách bài tập toán 9 - Cánh diều tập 1 là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng giải phương trình bậc hai. Hy vọng rằng với lời giải chi tiết và các mẹo giải nhanh mà chúng tôi đã cung cấp, các em học sinh sẽ tự tin hơn khi đối mặt với bài tập này.

Tài liệu, đề thi và đáp án Toán 9