Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập toán 9. Bài viết này sẽ hướng dẫn bạn cách giải bài 7 trang 58 sách bài tập toán 9 - Cánh diều tập 2 một cách nhanh chóng và hiệu quả.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, chúng tôi đã biên soạn lời giải bài 7 trang 58 một cách cẩn thận, kèm theo các bước giải chi tiết và giải thích rõ ràng để giúp bạn nắm vững kiến thức.
Cho hàm số (y = k{x^2}left( {k ne 0} right)) có đồ thị là một parabol với đỉnh O như Hình 3. a) Tìm giá trị của k. b) Tìm tung độ của điểm thuộc parabol có hoành độ bằng 2. c) Tìm các điểm thuộc parabol có tung độ bằng 2. d*) Tìm các điểm (không phải điểm O) thuộc parabol sao cho khoảng cách từ điểm đó đến trục hoành gấp ba lần khoảng cách từ điểm đó đến trục tung.
Đề bài
Cho hàm số \(y = k{x^2}\left( {k \ne 0} \right)\) có đồ thị là một parabol với đỉnh O như Hình 3.
a) Tìm giá trị của k.
b) Tìm tung độ của điểm thuộc parabol có hoành độ bằng 2.
c) Tìm các điểm thuộc parabol có tung độ bằng 2.
d*) Tìm các điểm (không phải điểm O) thuộc parabol sao cho khoảng cách từ điểm đó đến trục hoành gấp ba lần khoảng cách từ điểm đó đến trục tung.
Phương pháp giải - Xem chi tiết
Bước 1: Để tìm k, ta cần thay tọa độ các điểm thuộc đồ thị hàm số vào đồ thị hàm số thông qua hình vẽ điểm (3;3).
Bước 2: Xác định đồ thị hàm số với k vừa tìm được. Hoành độ của điểm bằng 2 tức là thay \(x = 2\) vào đồ thị hàm số rồi tính y.
Bước 3: Tung độ của điểm bằng 2 tức là thay \(y = 2\) vào đồ thị hàm số rồi tính x.
Bước 4: Khoảng cách từ 1 điểm đến trục hoành gấp ba lần khoảng cách từ điểm đó đến trục tung tức là tung độ gấp 3 lần hoành độ hay \(\left| y \right| = \left| {3x} \right|\), mà trong bài này \(y \ge 0\) nên \(y = \left| {3x} \right|\).
Lời giải chi tiết
a) Đồ thị hàm số đi qua các điểm là \(O\left( {0;0} \right)\) và \(\left( {3;3} \right)\)
nên ta có: \(0 = {k^2}.0\) và \(3 = k{.3^2}\) nên \(k = \frac{1}{3}\). Vậy \(k = \frac{1}{3}\)
b) Với \(k = \frac{1}{3}\) đồ thị hàm số có dạng \(y = \frac{1}{3}{x^2}\)
Thay \(x = 2\) vào đồ thị hàm số \(y = \frac{1}{3}{x^2}\) ta được: \(y = \frac{1}{3}{.2^2} = \frac{4}{3}\)
Vậy tung độ của điểm có hoành độ bằng 2 là \(\frac{4}{3}\).
c) Thay \(y = 2\) vào đồ thị hàm số \(y = \frac{1}{3}{x^2}\) ta được \(2 = \frac{1}{3}{x^2}\) hay \(x = \sqrt 6 \) hoặc \(x = - \sqrt 6 .\)
Vậy các điểm thuộc parabol có tung độ bằng 2 là \(\left( {\sqrt 6 ;2} \right)\) và \(\left( { - \sqrt 6 ;2} \right).\)
d) Ta có \(y = \left| {3x} \right|\).
Do đó ta có \(\left| {3x} \right| = \frac{1}{3}{x^2}\) hay \({x^2} - 9\left| x \right| = 0\)
suy ra \({\left| x \right|^2} - 9\left| x \right| = 0\)
nên \(\left| x \right|\left( {\left| x \right| - 9} \right) = 0\)
Giải phương trình:
+) \(\left| x \right| = 0\) suy ra \(x = 0\) (loại)
+) \(\left| x \right| - 9 = 0\) suy ra \(x = 9\) (t/m), \(x = - 9\) (t/m).
Với \(x = 9\) ta có \(y = \frac{1}{3}{.9^2} = 27\);
Với \(x = - 9\) ta có \(y = \frac{1}{3}.{\left( { - 9} \right)^2} = 27\)
Vậy các điểm thuộc đồ thị hàm số thỏa mãn đề bài là \(\left( {9;27} \right);\left( { - 9;27} \right).\)
Bài 7 trang 58 sách bài tập toán 9 - Cánh diều tập 2 thuộc chương trình đại số, tập trung vào việc giải phương trình bậc hai một ẩn. Để giải quyết bài toán này, học sinh cần nắm vững các kiến thức về phương trình bậc hai, công thức nghiệm và các phương pháp giải phương trình.
Bài 7 thường bao gồm các dạng bài tập sau:
Để giúp bạn hiểu rõ hơn về cách giải bài 7 trang 58, chúng ta sẽ cùng nhau phân tích một số ví dụ cụ thể:
Bước 1: Xác định các hệ số a, b, c
Trong phương trình 2x2 - 5x + 2 = 0, ta có:
Bước 2: Tính delta (Δ)
Δ = b2 - 4ac = (-5)2 - 4 * 2 * 2 = 25 - 16 = 9
Bước 3: Xác định nghiệm của phương trình
Vì Δ > 0, phương trình có hai nghiệm phân biệt:
x1 = (-b + √Δ) / 2a = (5 + √9) / (2 * 2) = (5 + 3) / 4 = 2
x2 = (-b - √Δ) / 2a = (5 - √9) / (2 * 2) = (5 - 3) / 4 = 0.5
Kết luận: Phương trình 2x2 - 5x + 2 = 0 có hai nghiệm là x1 = 2 và x2 = 0.5
Bước 1: Xác định các hệ số a, b, c
Trong phương trình x2 - 4x + 4 = 0, ta có:
Bước 2: Tính delta (Δ)
Δ = b2 - 4ac = (-4)2 - 4 * 1 * 4 = 16 - 16 = 0
Bước 3: Xác định nghiệm của phương trình
Vì Δ = 0, phương trình có nghiệm kép:
x = -b / 2a = -(-4) / (2 * 1) = 4 / 2 = 2
Kết luận: Phương trình x2 - 4x + 4 = 0 có nghiệm kép là x = 2
Phương trình bậc hai có rất nhiều ứng dụng trong thực tế, ví dụ như:
Hy vọng với hướng dẫn chi tiết này, bạn đã có thể tự tin giải bài 7 trang 58 sách bài tập toán 9 - Cánh diều tập 2. Chúc bạn học tập tốt!