Logo Header
  1. Môn Toán
  2. Giải bài 4 trang 57 sách bài tập toán 9 - Cánh diều tập 2

Giải bài 4 trang 57 sách bài tập toán 9 - Cánh diều tập 2

Giải bài 4 trang 57 sách bài tập toán 9 - Cánh diều tập 2

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập toán 9. Bài viết này sẽ hướng dẫn bạn giải bài 4 trang 57 sách bài tập toán 9 - Cánh diều tập 2 một cách nhanh chóng và hiệu quả.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, đặc biệt là với những bài tập đòi hỏi sự tư duy và vận dụng kiến thức. Vì vậy, chúng tôi luôn cố gắng cung cấp những lời giải rõ ràng, chi tiết, kèm theo các giải thích cụ thể để bạn có thể hiểu rõ bản chất của bài toán.

Một viên bi lăn trên mặt phẳng nghiêng. Đoạn đường đi được liên hệ với thời gian bởi hàm số (y = a{t^2}) (t tính bằng giây, y tính bằng mét). Người ta đo được quãng đường viên bi lăn được ở thời điểm 3 giây là 2,25 m. Hỏi khi viên bi lăn được quãng đường 6,25 m thì nó đã lăn trong bao lâu?

Đề bài

Một viên bi lăn trên mặt phẳng nghiêng. Đoạn đường đi được liên hệ với thời gian

bởi hàm số \(y = a{t^2}\) (t tính bằng giây, y tính bằng mét). Người ta đo được quãng đường viên bi lăn được ở thời điểm 3 giây là 2,25 m. Hỏi khi viên bi lăn được quãng đường 6,25 m thì nó đã lăn trong bao lâu?

Phương pháp giải - Xem chi tiếtGiải bài 4 trang 57 sách bài tập toán 9 - Cánh diều tập 2 1

Bước 1: Thay\(t = 3\), \(y = 2,25\) vào \(y = a{t^2}\) để tìm a.

Bước 2: Thay \(y = 6,25\) vào hàm số vừa tìm được, ta tính được t.

Lời giải chi tiết

Vì viên bi lăn \(t = 3\) giây được quãng đường \(y = 2,25\) m, nên ta có: \(2,25 = a{.3^2}\) hay \(a = 0,25\).

Vậy hàm số có dạng \(y = 0,25{t^2}\).

Thay \(y = 6,25\) vào hàm số \(y = 0,25{t^2}\) ta được \(6,25 = 0,25{t^2}\), suy ra \(t = 5\) (do \(t > 0\)).

Vậy viên bi lăn được quãng đường 6,25 m thì hết thời gian là 5 giây.

Làm chủ Toán 9, tự tin vào phòng thi! Đừng bỏ lỡ Giải bài 4 trang 57 sách bài tập toán 9 - Cánh diều tập 2 đặc sắc thuộc chuyên mục toán 9 trên nền tảng đề thi toán. Với bộ bài tập lý thuyết toán thcs được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình sách giáo khoa mới nhất, đây chính là công cụ đắc lực giúp các em tối ưu hóa ôn luyện, củng cố kiến thức vững chắc và thuần thục mọi dạng bài thi khó nhằn. Phương pháp học trực quan, khoa học sẽ mang lại hiệu quả vượt trội, giúp con bạn chinh phục mọi thử thách một cách dễ dàng.

Giải bài 4 trang 57 sách bài tập toán 9 - Cánh diều tập 2: Tổng quan

Bài 4 trang 57 sách bài tập toán 9 - Cánh diều tập 2 thuộc chương trình học toán 9, tập trung vào việc vận dụng các kiến thức về hàm số bậc nhất và hàm số bậc hai để giải quyết các bài toán thực tế. Bài tập này yêu cầu học sinh phải nắm vững các khái niệm về hệ số góc, giao điểm của đồ thị hàm số, và các phương pháp giải phương trình bậc hai.

Nội dung bài toán

Bài 4 thường bao gồm các dạng bài tập sau:

  • Xác định hệ số góc của đường thẳng.
  • Tìm giao điểm của hai đường thẳng.
  • Giải phương trình bậc hai và biện luận nghiệm.
  • Ứng dụng hàm số vào các bài toán thực tế (ví dụ: tính quãng đường, thời gian, vận tốc).

Lời giải chi tiết bài 4 trang 57

Để giải bài 4 trang 57 sách bài tập toán 9 - Cánh diều tập 2, chúng ta cần thực hiện các bước sau:

  1. Đọc kỹ đề bài: Xác định rõ yêu cầu của bài toán, các dữ kiện đã cho và các đại lượng cần tìm.
  2. Xây dựng mô hình toán học: Biểu diễn bài toán bằng các phương trình, hàm số hoặc bất đẳng thức.
  3. Giải phương trình/hàm số: Sử dụng các kiến thức và kỹ năng đã học để giải phương trình hoặc hàm số.
  4. Kiểm tra lại kết quả: Đảm bảo rằng kết quả tìm được phù hợp với điều kiện của bài toán và có ý nghĩa thực tế.

Ví dụ minh họa:

Giả sử đề bài yêu cầu tìm giao điểm của hai đường thẳng y = 2x + 1 và y = -x + 4.

Lời giải:

Để tìm giao điểm, ta giải hệ phương trình:

y = 2x + 1y = -x + 4
Phương trình 1y = 2x + 1
Phương trình 2y = -x + 4

Thay y = 2x + 1 vào phương trình thứ hai, ta được:

2x + 1 = -x + 4

3x = 3

x = 1

Thay x = 1 vào phương trình y = 2x + 1, ta được:

y = 2(1) + 1 = 3

Vậy giao điểm của hai đường thẳng là (1; 3).

Các lưu ý khi giải bài tập

  • Nắm vững các định nghĩa, tính chất và công thức liên quan đến hàm số.
  • Luyện tập thường xuyên để làm quen với các dạng bài tập khác nhau.
  • Sử dụng máy tính bỏ túi để kiểm tra lại kết quả.
  • Đọc kỹ đề bài và xác định rõ yêu cầu của bài toán.
  • Kiểm tra lại kết quả trước khi nộp bài.

Tài liệu tham khảo

Để học tốt toán 9, bạn có thể tham khảo các tài liệu sau:

  • Sách giáo khoa toán 9 - Cánh diều.
  • Sách bài tập toán 9 - Cánh diều.
  • Các trang web học toán online uy tín (ví dụ: giaitoan.edu.vn).
  • Các video bài giảng toán 9 trên YouTube.

Kết luận

Bài 4 trang 57 sách bài tập toán 9 - Cánh diều tập 2 là một bài tập quan trọng giúp bạn củng cố kiến thức về hàm số và rèn luyện kỹ năng giải toán. Hy vọng rằng với lời giải chi tiết và các lưu ý trên, bạn sẽ giải bài tập này một cách dễ dàng và hiệu quả. Chúc bạn học tốt!

Tài liệu, đề thi và đáp án Toán 9