Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 9. Bài viết này sẽ hướng dẫn bạn cách giải bài 33 trang 66 sách bài tập Toán 9 - Cánh Diều tập 1 một cách nhanh chóng và hiệu quả.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, chúng tôi đã biên soạn lời giải bài 33 trang 66 này với mục đích giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Trục căn thức ở mẫu: a) \(\frac{{2 - \sqrt 5 }}{{\sqrt 5 }}\) b) \(\frac{{\sqrt 2 + 1}}{{\sqrt 2 - 1}}\) c) \(\frac{8}{{3\sqrt 5 + 3}}\) d) \(\frac{1}{{\sqrt[3]{3} + \sqrt[3]{7}}}\)
Đề bài
Trục căn thức ở mẫu:
a) \(\frac{{2 - \sqrt 5 }}{{\sqrt 5 }}\)
b) \(\frac{{\sqrt 2 + 1}}{{\sqrt 2 - 1}}\)
c) \(\frac{8}{{3\sqrt 5 + 3}}\)
d) \(\frac{1}{{\sqrt[3]{3} + \sqrt[3]{7}}}\)
Phương pháp giải - Xem chi tiết
Xét biểu thức chứa căn ở dưới mẫu để chọn nhân tử phù hợp làm mất căn (thường áp dụng hằng đẳng thức).
Lời giải chi tiết
a) \(\frac{{2 - \sqrt 5 }}{{\sqrt 5 }} = \frac{{\sqrt 5 \left( {2 - \sqrt 5 } \right)}}{{\sqrt 5 .\sqrt 5 }} = \frac{{\sqrt 5 \left( {2 - \sqrt 5 } \right)}}{5}\)
b) \(\frac{{\sqrt 2 + 1}}{{\sqrt 2 - 1}} = \frac{{{{\left( {\sqrt 2 + 1} \right)}^2}}}{{\left( {\sqrt 2 - 1} \right)\left( {\sqrt 2 + 1} \right)}} = {\left( {\sqrt 2 + 1} \right)^2}\)
c) \(\frac{8}{{3\sqrt 5 + 3}} = \frac{8}{{3\left( {\sqrt 5 + 1} \right)}}\)
\( = \frac{{8\left( {\sqrt 5 - 1} \right)}}{{3\left( {\sqrt 5 + 1} \right)\left( {\sqrt 5 - 1} \right)}} = \frac{{8\left( {\sqrt 5 - 1} \right)}}{{3\left( {5 - 1} \right)}} = \frac{{2\left( {\sqrt 5 - 1} \right)}}{3}\)
d) \(\frac{1}{{\sqrt[3]{3} + \sqrt[3]{7}}} = \frac{{{{\left( {\sqrt[3]{3}} \right)}^2} - \sqrt[3]{3}.\sqrt[3]{7} + {{\left( {\sqrt[3]{7}} \right)}^2}}}{{\left( {\sqrt[3]{3} + \sqrt[3]{7}} \right)\left[ {{{\left( {\sqrt[3]{3}} \right)}^2} - \sqrt[3]{3}.\sqrt[3]{7} + {{\left( {\sqrt[3]{7}} \right)}^2}} \right]}}\)
\( = \frac{{\sqrt[3]{{{3^2}}} - \sqrt[3]{{3.7}} + \sqrt[3]{{{7^2}}}}}{{{{\left( {\sqrt[3]{3}} \right)}^3} + {{\left( {\sqrt[3]{7}} \right)}^3}}} = \frac{{\sqrt[3]{9} - \sqrt[3]{{21}} + \sqrt[3]{{49}}}}{{10}}\)
Bài 33 trang 66 sách bài tập Toán 9 - Cánh Diều tập 1 thuộc chương trình học về hàm số bậc nhất. Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số bậc nhất để giải các bài toán thực tế, liên quan đến việc xác định hàm số, vẽ đồ thị hàm số và ứng dụng hàm số vào việc giải quyết các vấn đề trong đời sống.
Bài 33 bao gồm các câu hỏi và bài tập khác nhau, tập trung vào các nội dung sau:
Dưới đây là lời giải chi tiết cho từng câu hỏi và bài tập trong bài 33 trang 66 sách bài tập Toán 9 - Cánh Diều tập 1:
Đề bài: Cho hàm số y = 2x - 3. Tính giá trị của y khi x = -1; x = 0; x = 2.
Lời giải:
Đề bài: Vẽ đồ thị của hàm số y = -x + 2.
Lời giải:
Để vẽ đồ thị của hàm số y = -x + 2, ta cần xác định hai điểm thuộc đồ thị. Ví dụ, ta có thể chọn x = 0 và x = 2:
Nối hai điểm A và B, ta được đồ thị của hàm số y = -x + 2.
Đề bài: Một người đi xe đạp với vận tốc 15 km/h. Gọi t là thời gian đi (tính bằng giờ) và y là quãng đường đi được (tính bằng km). Hãy viết công thức tính y theo t.
Lời giải:
Quãng đường đi được bằng vận tốc nhân với thời gian. Vậy công thức tính y theo t là: y = 15t.
Hy vọng rằng lời giải chi tiết bài 33 trang 66 sách bài tập Toán 9 - Cánh Diều tập 1 này sẽ giúp bạn hiểu rõ hơn về hàm số bậc nhất và tự tin hơn trong quá trình học tập. Hãy luyện tập thường xuyên để nắm vững kiến thức và đạt kết quả tốt nhất!