Bài 18 trang 58 sách bài tập Toán 9 - Cánh Diều tập 1 là một bài tập quan trọng trong chương trình học. Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số bậc nhất và hàm số bậc hai để giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 18 trang 58 sách bài tập Toán 9 - Cánh Diều tập 1, giúp các em học sinh nắm vững kiến thức và tự tin làm bài tập.
Rút gọn biểu thức: a) \(\sqrt {20} - \sqrt {45} + \sqrt 5 \) b) \({\left( {\sqrt 6 - \sqrt 5 } \right)^2} + \sqrt {120} \) c) \(\left( {3\sqrt 5 + \sqrt {13} } \right)\left( {\sqrt {45} - \sqrt {13} } \right)\) d) \(\left( {2\sqrt 3 + \sqrt 5 } \right)\sqrt 3 - \sqrt {60} \)
Đề bài
Rút gọn biểu thức:
a) \(\sqrt {20} - \sqrt {45} + \sqrt 5 \)
b) \({\left( {\sqrt 6 - \sqrt 5 } \right)^2} + \sqrt {120} \)
c) \(\left( {3\sqrt 5 + \sqrt {13} } \right)\left( {\sqrt {45} - \sqrt {13} } \right)\)
d) \(\left( {2\sqrt 3 + \sqrt 5 } \right)\sqrt 3 - \sqrt {60} \)
Phương pháp giải - Xem chi tiết
a) Đặt nhân tử chung \(\sqrt 5 \)
b) Khai triển hằng đẳng thức \({\left( {\sqrt 6 - \sqrt 5 } \right)^2}\).
c) Áp dụng hằng đẳng thức \({a^2} - {b^2}\).
d) Dùng quy tắc nhân đa thức.
Lời giải chi tiết
a) \(\sqrt {20} - \sqrt {45} + \sqrt 5 \) \(= \sqrt 5 \left( {\sqrt 4 - \sqrt 9 + 1} \right) \) \(= \sqrt 5 \left( {2 - 3 + 1} \right) \) \(= 0.\)
b) \({\left( {\sqrt 6 - \sqrt 5 } \right)^2} + \sqrt {120} \) \(= \left( {6 - 2\sqrt {30} + 5} \right) + 2\sqrt {30} \) \(= 11.\)
c) \(\left( {3\sqrt 5 + \sqrt {13} } \right)\left( {\sqrt {45} - \sqrt {13} } \right) \) \(= \left( {\sqrt {45} + \sqrt {13} } \right)\left( {\sqrt {45} - \sqrt {13} } \right) \) \(= {\left( {\sqrt {45} } \right)^2} - {\left( {\sqrt {13} } \right)^2} \) \(= 45 - 13 \) \(= 32.\)
d) \(\left( {2\sqrt 3 + \sqrt 5 } \right)\sqrt 3 - \sqrt {60} \) \(= 2\sqrt 3 .\sqrt 3 + \sqrt 5 .\sqrt 3 - \sqrt {60} \) \(= 6 + \sqrt {15} - 2\sqrt {15} \) \(= 6 - \sqrt {15} .\)
Bài 18 trang 58 sách bài tập Toán 9 - Cánh Diều tập 1 thuộc chương trình học về hàm số. Bài tập này tập trung vào việc xác định hệ số góc và tung độ gốc của đường thẳng, cũng như ứng dụng các kiến thức này để giải quyết các bài toán liên quan đến đồ thị hàm số.
Bài 18 bao gồm các câu hỏi và bài tập khác nhau, yêu cầu học sinh:
Để xác định hệ số góc và tung độ gốc của đường thẳng có phương trình y = ax + b, ta chỉ cần nhìn vào các hệ số a và b. Hệ số a là hệ số góc, còn b là tung độ gốc.
Ví dụ: Với phương trình y = 2x - 3, hệ số góc là 2 và tung độ gốc là -3.
Để viết phương trình đường thẳng khi biết hệ số góc m và một điểm A(x0; y0) thuộc đường thẳng, ta sử dụng công thức:
y - y0 = m(x - x0)
Ví dụ: Viết phương trình đường thẳng có hệ số góc là -1 và đi qua điểm B(1; 2). Ta có:
y - 2 = -1(x - 1) => y - 2 = -x + 1 => y = -x + 3
Để xác định giao điểm của hai đường thẳng, ta giải hệ phương trình gồm phương trình của hai đường thẳng đó. Hoành độ và tung độ của nghiệm của hệ phương trình là tọa độ của giao điểm.
Ví dụ: Tìm giao điểm của hai đường thẳng y = x + 1 và y = -x + 3. Ta giải hệ phương trình:
{ y = x + 1 y = -x + 3 }
Thay y = x + 1 vào phương trình thứ hai, ta được: x + 1 = -x + 3 => 2x = 2 => x = 1. Thay x = 1 vào phương trình y = x + 1, ta được: y = 1 + 1 = 2. Vậy giao điểm của hai đường thẳng là (1; 2).
Các kiến thức và kỹ năng được học trong bài 18 trang 58 sách bài tập Toán 9 - Cánh Diều tập 1 có ứng dụng rất lớn trong thực tế, đặc biệt trong các lĩnh vực như:
Bài 18 trang 58 sách bài tập Toán 9 - Cánh Diều tập 1 là một bài tập quan trọng giúp học sinh củng cố kiến thức về hàm số và rèn luyện kỹ năng giải toán. Hy vọng với lời giải chi tiết và những lưu ý trên, các em học sinh sẽ tự tin hơn khi làm bài tập và đạt kết quả tốt trong môn Toán.