Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập toán 9. Bài viết này sẽ hướng dẫn bạn giải bài 26 trang 110 sách bài tập toán 9 - Cánh diều tập 1 một cách nhanh chóng và hiệu quả.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, đặc biệt là với những bài tập đòi hỏi sự tư duy và vận dụng kiến thức. Vì vậy, chúng tôi đã biên soạn lời giải bài 26 trang 110 một cách cẩn thận, kèm theo các bước giải chi tiết và giải thích rõ ràng.
Cho tam giác ABC vuông tại A có đường cao AH. Hình chiếu của H trên AB, AC lần lượt là D, E. Gọi (O) là đường tròn đường kính HB và (O') là đường tròn đường kính HC. Chứng minh: a) Điểm D thuộc đường tròn (O) và điểm E thuộc đường tròn (O’); b) Hai đường tròn (O) và (O') tiếp xúc ngoài; c) AH là tiếp tuyến chung của hai đường tròn (O) và (O’); d) AH = DE; e) Diện tích tứ giác DEO’O bằng nửa diện tích tam giác ABC.
Đề bài
Cho tam giác ABC vuông tại A có đường cao AH. Hình chiếu của H trên AB, AC lần lượt là D, E. Gọi (O) là đường tròn đường kính HB và (O') là đường tròn đường kính HC. Chứng minh:
a) Điểm D thuộc đường tròn (O) và điểm E thuộc đường tròn (O’);
b) Hai đường tròn (O) và (O') tiếp xúc ngoài;
c) AH là tiếp tuyến chung của hai đường tròn (O) và (O’);
d) AH = DE;
e) Diện tích tứ giác DEO’O bằng nửa diện tích tam giác ABC.
Phương pháp giải - Xem chi tiết
a) Chứng minh \(OB = OD = OH = \frac{{BH}}{2}\); \(O'H = O'E = O'C = \frac{{HC}}{2}\).
b) Chứng minh \(OO' = OH + O'H\).
c) Chứng minh \(AH \bot OO'\).
d) Chứng minh ADHE là hình chữ nhật.
e) Bước 1: Chứng minh ODEO’ là hình thang vuông.
Bước 2: Biểu diễn diện tích 2 hình theo công thức.
Bước 3: Vận dụng dữ kiện \(AH = DE\), \(BC = BH + CH = 2\left( {OD + O'E} \right)\) để biến đổi.
Lời giải chi tiết
a) Do tam giác BDH vuông tại D và O là trung điểm của BH (BO và HO là bán kính đường tròn (O)) nên \(OB = OD = OH = \frac{{BH}}{2}\), do đó D thuộc đường tròn (O).
Do tam giác ECH vuông tại E và O’ là trung điểm của CH (O’H và O’C là bán kính đường tròn (O))nên \(O'H = O'E = O'C = \frac{{HC}}{2}\), do đó E thuộc đường tròn (O’).
b) Do tam giác ABC vuông tại A có AH là đường cao, \(H \in BC\) nên H nằm giữa B và C.
Mà (O) là đường tròn đường kính HB và (O') là đường tròn đường kính HC nên H nằm giữa O và O’, do đó \(OO' = OH + O'H\), vậy đường tròn (O) và (O') tiếp xúc ngoài.
c) Ta có OH, O’H lần lượt là bán kính của (O) và (O’) , và AH vuông góc với OO’ tại H nên AH là tiếp tuyến chung của hai đường tròn (O) và (O’).
d) Do tam giác BDH vuông tại D nên \(\widehat {BDH} = 90^\circ \), do đó \(\widehat {HDA} = 90^\circ \).
Do tam giác ECH vuông tại E nên \(\widehat {ECH} = 90^\circ \), do đó \(\widehat {HEA} = 90^\circ \).
Xét tứ giác ADHE có \(\widehat {HDA} = \widehat {HEA} = \widehat {DAE} = 90^\circ \) nên ADHE là hình chữ nhật, do đó \(AH = DE\).
e) Do ADHE là hình chữ nhật nên \(IA = ID = IH = IE\).
Xét hai tam giác OID và OIH có:
\(OD = OH\);
OI chung;
\(ID = IH\)
Suy ra \(\Delta OID = \Delta OIH\) (c.c.c), do đó \(\widehat {OHI} = \widehat {ODI} = 90^\circ \), hay \(OD \bot DE\).
Xét hai tam giác OIE và O’IH có:
\(O'E = O'H\);
O’I chung;
\(IE = IH\)
Suy ra \(\Delta OIE = \Delta O'IH\)(c.c.c), do đó \(\widehat {O'HI} = \widehat {O'EI} = 90^\circ \), hay \(O'E \bot DE\).
Xét ODEO’ có \(OD \bot DE\), \(O'E \bot DE\) nên \(OD//EO'\), do đó ODEO’ là hình thang vuông và DE là đường cao.
Diện tích hình thang ODEO’ và tam giác ABC lần lượt là: \({S_1} = \frac{{DE\left( {OD + O'E} \right)}}{2};{S_2} = \frac{{AH.BC}}{2}\)
Mà \(AH = DE\), \(BC = BH + CH = 2\left( {OD + O'E} \right)\)
Suy ra \({S_1} = \frac{1}{2}{S_2}\).
Vậy diện tích tứ giác DEO’O bằng nửa diện tích tam giác ABC.
Bài 26 trang 110 sách bài tập toán 9 - Cánh diều tập 1 thuộc chương trình học toán 9, tập trung vào việc ôn tập và củng cố kiến thức về hàm số bậc nhất. Bài tập này yêu cầu học sinh vận dụng các kiến thức đã học để giải quyết các bài toán thực tế liên quan đến hàm số, bao gồm việc xác định hệ số góc, phương trình đường thẳng, và ứng dụng của hàm số trong các bài toán hình học.
Bài 26 trang 110 sách bài tập toán 9 - Cánh diều tập 1 thường bao gồm các dạng bài tập sau:
Để giúp bạn hiểu rõ hơn về cách giải bài 26 trang 110 sách bài tập toán 9 - Cánh diều tập 1, chúng tôi sẽ cung cấp lời giải chi tiết cho từng dạng bài tập:
Ví dụ: Cho đường thẳng có phương trình y = 2x + 3. Xác định hệ số góc của đường thẳng này.
Lời giải: Hệ số góc của đường thẳng y = 2x + 3 là 2.
Ví dụ: Viết phương trình đường thẳng đi qua điểm A(1; 2) và có hệ số góc là -1.
Lời giải: Phương trình đường thẳng có dạng y = -x + b. Thay tọa độ điểm A(1; 2) vào phương trình, ta được: 2 = -1 + b => b = 3. Vậy phương trình đường thẳng là y = -x + 3.
Ví dụ: Cho tam giác ABC có A(0; 0), B(1; 2), C(3; 0). Tìm phương trình đường thẳng BC.
Lời giải: Gọi phương trình đường thẳng BC là y = ax + b. Thay tọa độ điểm B(1; 2) và C(3; 0) vào phương trình, ta được hệ phương trình:
Giải hệ phương trình, ta được a = -1 và b = 3. Vậy phương trình đường thẳng BC là y = -x + 3.
Để giải bài tập về hàm số bậc nhất một cách hiệu quả, bạn nên:
Hy vọng rằng với lời giải chi tiết và các mẹo giải bài tập mà chúng tôi đã cung cấp, bạn sẽ có thể tự tin giải bài 26 trang 110 sách bài tập toán 9 - Cánh diều tập 1 một cách nhanh chóng và hiệu quả. Chúc bạn học tốt!