Logo Header
  1. Môn Toán
  2. Giải bài 58 trang 125 sách bài tập toán 9 - Cánh diều tập 1

Giải bài 58 trang 125 sách bài tập toán 9 - Cánh diều tập 1

Giải bài 58 trang 125 sách bài tập toán 9 - Cánh diều tập 1

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập toán 9. Bài viết này sẽ hướng dẫn bạn giải bài 58 trang 125 sách bài tập toán 9 - Cánh diều tập 1 một cách nhanh chóng và hiệu quả.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, đặc biệt là với những bài tập đòi hỏi sự tư duy và vận dụng kiến thức. Vì vậy, chúng tôi luôn cố gắng trình bày lời giải một cách rõ ràng, logic và dễ tiếp thu nhất.

Cho hình vành khuyên giới hạn bởi hai đường tròn (O; R), (O; r) với \(R + r = 1,2dm\), \(R > r\)và diện tích hình vành khuyên đó là 1,5072 dm2 (Hình 55). Tính R và r, \(\pi \approx 3,14\).

Đề bài

Cho hình vành khuyên giới hạn bởi hai đường tròn (O; R), (O; r) với \(R + r = 1,2dm\), \(R > r\)và diện tích hình vành khuyên đó là 1,5072 dm2 (Hình 55). Tính R và r, \(\pi \approx 3,14\).

Giải bài 58 trang 125 sách bài tập toán 9 - Cánh diều tập 1 1

Phương pháp giải - Xem chi tiếtGiải bài 58 trang 125 sách bài tập toán 9 - Cánh diều tập 1 2

Bước 1: Từ \(R + r = 1,2\) suy ra \(R = 1,2 - r\).

Bước 2: Thế \(R = 1,2 - r\) vào \(\pi \left( {{R^2} - {r^2}} \right) = 1,5072\) để tìm r, từ đó tính được R.

Lời giải chi tiết

Diện tích hình vành khuyên là 1,5072 dm2 nên ta có \(\pi \left( {{R^2} - {r^2}} \right) = 1,5072\) hay \(\left( {R - r} \right)\left( {R + r} \right) = \frac{{1,5072}}{\pi }\) (1)

Mà \(R + r = 1,2\) hay \(R = 1,2 - r\). Thế \(R = 1,2 - r\) vào (1) ta có:

\(\left( {1,2 - r - r} \right)\left( {1,2 - r + r} \right) = \frac{{1,5072}}{\pi }\) nên \(\left( {1,2 - 2r} \right).1,2 = \frac{{1,5072}}{\pi }\), do đó \(1,2 - 2r = \frac{{1,5072}}{{\pi .1,2}}\)

Suy ra \(r \approx 0,4\)dm và \(R = 1,2 - r \approx 1,2 - 0,4 = 0,8\)dm.

Làm chủ Toán 9, tự tin vào phòng thi! Đừng bỏ lỡ Giải bài 58 trang 125 sách bài tập toán 9 - Cánh diều tập 1 đặc sắc thuộc chuyên mục giải toán 9 trên nền tảng soạn toán. Với bộ bài tập toán trung học cơ sở được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình sách giáo khoa mới nhất, đây chính là công cụ đắc lực giúp các em tối ưu hóa ôn luyện, củng cố kiến thức vững chắc và thuần thục mọi dạng bài thi khó nhằn. Phương pháp học trực quan, khoa học sẽ mang lại hiệu quả vượt trội, giúp con bạn chinh phục mọi thử thách một cách dễ dàng.

Giải bài 58 trang 125 sách bài tập toán 9 - Cánh diều tập 1: Hướng dẫn chi tiết

Bài 58 trang 125 sách bài tập toán 9 - Cánh diều tập 1 thuộc chương trình học toán 9, tập trung vào việc ôn tập và củng cố kiến thức về hàm số bậc nhất. Bài tập này yêu cầu học sinh vận dụng các kiến thức đã học để giải quyết các bài toán thực tế liên quan đến hàm số.

Nội dung bài 58 trang 125 sách bài tập toán 9 - Cánh diều tập 1

Bài 58 bao gồm các dạng bài tập sau:

  • Dạng 1: Xác định hệ số góc và tung độ gốc của hàm số bậc nhất.
  • Dạng 2: Tìm tọa độ giao điểm của hai đường thẳng.
  • Dạng 3: Giải các bài toán ứng dụng liên quan đến hàm số bậc nhất.

Lời giải chi tiết bài 58 trang 125 sách bài tập toán 9 - Cánh diều tập 1

Để giúp bạn hiểu rõ hơn về cách giải bài 58, chúng tôi sẽ trình bày lời giải chi tiết cho từng dạng bài tập.

Dạng 1: Xác định hệ số góc và tung độ gốc của hàm số bậc nhất

Ví dụ: Cho hàm số y = 2x - 3. Hãy xác định hệ số góc và tung độ gốc của hàm số.

Lời giải:

Hàm số y = 2x - 3 là hàm số bậc nhất có dạng y = ax + b, trong đó:

  • a là hệ số góc, a = 2
  • b là tung độ gốc, b = -3

Vậy, hệ số góc của hàm số là 2 và tung độ gốc là -3.

Dạng 2: Tìm tọa độ giao điểm của hai đường thẳng

Ví dụ: Tìm tọa độ giao điểm của hai đường thẳng y = x + 1 và y = -x + 3.

Lời giải:

Để tìm tọa độ giao điểm của hai đường thẳng, ta giải hệ phương trình sau:

  1. y = x + 1
  2. y = -x + 3

Thay phương trình (1) vào phương trình (2), ta được:

x + 1 = -x + 3

2x = 2

x = 1

Thay x = 1 vào phương trình (1), ta được:

y = 1 + 1 = 2

Vậy, tọa độ giao điểm của hai đường thẳng là (1; 2).

Dạng 3: Giải các bài toán ứng dụng liên quan đến hàm số bậc nhất

Ví dụ: Một người đi xe máy với vận tốc 40 km/h. Hỏi sau 2 giờ người đó đi được bao nhiêu km?

Lời giải:

Gọi x là thời gian đi (giờ) và y là quãng đường đi được (km). Ta có hàm số y = 40x.

Khi x = 2, ta có y = 40 * 2 = 80.

Vậy, sau 2 giờ người đó đi được 80 km.

Lưu ý khi giải bài 58 trang 125 sách bài tập toán 9 - Cánh diều tập 1

  • Nắm vững các kiến thức về hàm số bậc nhất, bao gồm định nghĩa, dạng tổng quát, hệ số góc, tung độ gốc và cách xác định.
  • Luyện tập thường xuyên các dạng bài tập khác nhau để rèn luyện kỹ năng giải toán.
  • Đọc kỹ đề bài và xác định đúng yêu cầu của bài toán.
  • Kiểm tra lại kết quả sau khi giải xong.

Tổng kết

Bài 58 trang 125 sách bài tập toán 9 - Cánh diều tập 1 là một bài tập quan trọng giúp học sinh củng cố kiến thức về hàm số bậc nhất. Hy vọng với hướng dẫn chi tiết này, bạn sẽ giải bài tập một cách dễ dàng và hiệu quả. Chúc bạn học tốt!

Tài liệu, đề thi và đáp án Toán 9