Logo Header
  1. Môn Toán
  2. Giải bài 24 trang 113 sách bài tập toán 9 - Cánh diều tập 2

Giải bài 24 trang 113 sách bài tập toán 9 - Cánh diều tập 2

Giải bài 24 trang 113 Sách bài tập Toán 9 - Cánh Diều tập 2

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 24 trang 113 Sách bài tập Toán 9 - Cánh Diều tập 2. Bài viết này sẽ cung cấp phương pháp giải bài tập một cách dễ hiểu, giúp các em học sinh nắm vững kiến thức và tự tin làm bài tập.

Chúng tôi luôn cố gắng cung cấp nội dung chính xác, đầy đủ và cập nhật nhất để hỗ trợ quá trình học tập của các em. Hãy cùng theo dõi và luyện tập để đạt kết quả tốt nhất!

Trên mặt phẳng toạ độ Oxy cho A(–2; –2). Phép quay thuận chiều 90° tâm O biến điểm A thành điểm I. Khi đó tọa độ của điểm I là: A. (–2; 0). B. (0; –2). C. (2; –2). D. (–2; 2).

Đề bài

Trên mặt phẳng toạ độ Oxy cho A(–2; –2). Phép quay thuận chiều 90° tâm O biến điểm A thành điểm I. Khi đó tọa độ của điểm I là:

A. (–2; 0).

B. (0; –2).

C. (2; –2).

D. (–2; 2).

Phương pháp giải - Xem chi tiếtGiải bài 24 trang 113 sách bài tập toán 9 - Cánh diều tập 2 1

Dựa vào phép quay thuận chiều \({\alpha ^o}\) (\({0^o} < {\alpha ^o} < {360^o}\)) tâm O giữ nguyên điểm O, biến điểm M (khác điểm O) thành điểm M’ thuộc đường tròn (O; OM) sao cho tia OM quay thuận chiều kim đồng hồ đến tia OM’ thì điểm M tạo nên cung MnM’ có số đo \({\alpha ^o}\).

Lời giải chi tiết

Giải bài 24 trang 113 sách bài tập toán 9 - Cánh diều tập 2 2

Gọi H là hình chiếu của A trên Ox. Ta có A(–2; –2) nên OH = AH = |–2| = 2.

Do đó ∆AOH vuông cân tại H, nên \(\widehat {AOH} = {45^o}\).

Xét ∆AOH vuông tại H, ta có: OA2 = OH2 + AH2 (định lí Pythagore).

Suy ra \(OA = \sqrt {O{H^2} + A{H^2}} = \sqrt {{2^2} + {2^2}} = \sqrt 8 = 2\sqrt 2 \).

Gọi I là điểm đối xứng với A qua Ox, do đó I(–2; 2). Ta cũng chứng minh được \(\widehat {HOI} = {45^o}\) và OI = \(2\sqrt 2 \).

Như vậy, Phép quay thuận chiều 90° tâm O biến điểm A(–2; –2) thành điểm I(–2; 2).

Làm chủ Toán 9, tự tin vào phòng thi! Đừng bỏ lỡ Giải bài 24 trang 113 sách bài tập toán 9 - Cánh diều tập 2 đặc sắc thuộc chuyên mục sách bài tập toán 9 trên nền tảng toán. Với bộ bài tập toán trung học cơ sở được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình sách giáo khoa mới nhất, đây chính là công cụ đắc lực giúp các em tối ưu hóa ôn luyện, củng cố kiến thức vững chắc và thuần thục mọi dạng bài thi khó nhằn. Phương pháp học trực quan, khoa học sẽ mang lại hiệu quả vượt trội, giúp con bạn chinh phục mọi thử thách một cách dễ dàng.

Giải bài 24 trang 113 Sách bài tập Toán 9 - Cánh Diều tập 2: Tổng quan

Bài 24 trang 113 Sách bài tập Toán 9 - Cánh Diều tập 2 thuộc chương trình học Toán 9, tập trung vào việc ôn tập và củng cố kiến thức về hàm số bậc nhất. Bài tập này yêu cầu học sinh vận dụng các kiến thức đã học để giải quyết các bài toán thực tế, rèn luyện kỹ năng tư duy logic và khả năng giải quyết vấn đề.

Nội dung bài tập

Bài 24 bao gồm các dạng bài tập sau:

  • Xác định hệ số góc và tung độ gốc của hàm số bậc nhất.
  • Vẽ đồ thị hàm số bậc nhất.
  • Tìm giao điểm của hai đường thẳng.
  • Giải các bài toán ứng dụng liên quan đến hàm số bậc nhất.

Lời giải chi tiết bài 24 trang 113

Để giúp các em học sinh hiểu rõ hơn về cách giải bài tập này, chúng tôi xin trình bày lời giải chi tiết cho từng câu hỏi:

Câu a)

Đề bài: Cho hàm số y = 2x - 3. Hãy xác định hệ số góc và tung độ gốc của hàm số.

Lời giải:

Hàm số y = 2x - 3 là hàm số bậc nhất có dạng y = ax + b, trong đó:

  • a là hệ số góc, a = 2
  • b là tung độ gốc, b = -3

Vậy, hệ số góc của hàm số là 2 và tung độ gốc là -3.

Câu b)

Đề bài: Vẽ đồ thị của hàm số y = 2x - 3.

Lời giải:

Để vẽ đồ thị của hàm số y = 2x - 3, ta thực hiện các bước sau:

  1. Xác định hai điểm thuộc đồ thị. Ví dụ, ta có thể chọn x = 0 thì y = -3, và x = 1 thì y = -1.
  2. Vẽ hệ trục tọa độ Oxy.
  3. Đánh dấu hai điểm (0; -3) và (1; -1) lên hệ trục tọa độ.
  4. Nối hai điểm này lại với nhau bằng một đường thẳng. Đường thẳng này chính là đồ thị của hàm số y = 2x - 3.

Câu c)

Đề bài: Tìm giao điểm của đường thẳng y = 2x - 3 và đường thẳng y = -x + 6.

Lời giải:

Để tìm giao điểm của hai đường thẳng, ta giải hệ phương trình sau:

y = 2x - 3(1)
y = -x + 6(2)

Từ (1) và (2) suy ra: 2x - 3 = -x + 6

Chuyển vế và rút gọn, ta được: 3x = 9

Suy ra: x = 3

Thay x = 3 vào phương trình (1), ta được: y = 2 * 3 - 3 = 3

Vậy, giao điểm của hai đường thẳng là (3; 3).

Mẹo giải bài tập

Để giải tốt các bài tập về hàm số bậc nhất, các em cần nắm vững các kiến thức sau:

  • Khái niệm hàm số bậc nhất.
  • Cách xác định hệ số góc và tung độ gốc.
  • Cách vẽ đồ thị hàm số bậc nhất.
  • Cách tìm giao điểm của hai đường thẳng.

Ngoài ra, các em cũng nên luyện tập thường xuyên để rèn luyện kỹ năng và làm quen với các dạng bài tập khác nhau.

Kết luận

Bài 24 trang 113 Sách bài tập Toán 9 - Cánh Diều tập 2 là một bài tập quan trọng giúp các em học sinh củng cố kiến thức về hàm số bậc nhất. Hy vọng với lời giải chi tiết và các mẹo giải bài tập mà chúng tôi đã cung cấp, các em sẽ tự tin hơn khi làm bài tập và đạt kết quả tốt nhất.

Tài liệu, đề thi và đáp án Toán 9